1 / 15

Introduction to HSPICE

Introduction to HSPICE. Speaker : Shang-Jyh Shieh Email : d8542015@ccunix.ccu.edu.tw TEL : Lab 7354. P RELIMINARY. Appending the following line in your “.cshrc” file source /usr/meta/cur/bin/cshrc.meta HSPICE model path /vlsi-data/eda_models/hspice/tsmc035/logsp35.l (TSMC 0.35um)

Download Presentation

Introduction to HSPICE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to HSPICE Speaker : Shang-Jyh Shieh Email : d8542015@ccunix.ccu.edu.tw TEL : Lab 7354

  2. PRELIMINARY • Appending the following line in your “.cshrc” file source /usr/meta/cur/bin/cshrc.meta • HSPICE model path /vlsi-data/eda_models/hspice/tsmc035/logsp35.l (TSMC 0.35um) /vlsi-data/eda_models/hspice/tsmc06/logic06.l (TSMC 0.6um) /vlsi-data/eda_models/hspice/tsmc08/model0.8t (TSMC 0.8um) • HSPICE online document /usr/meta/cur/docs/hspiceManual.pdf HSPICE(200010)

  3. EXAMPLE OF INPUT (*.sp) • Include files .INC ‘and2.subckt’ • Library Call .LIB ‘/vlsi-data/eda_models/hspice/tsmc035/logsp35.l’ TT • Netlist • mp1 1 2 vdd! vdd! pch w=2.8u l=0.6u • mn1 1 2 gnd! gnd! nch w=1.4u l=0.6u • C1 3 gnd! 250fF IC=3.3V • R2 2 3 100meg • Output Control • .meas tran Tr TRIG v(in) val=‘3.3/2' TD=’10n' RISE=1 • + TARG v(out) val=‘3.3/2' RISE=1 • .meas tran Tf TRIG v(in) val=‘3.3/2' TD=’10n' FALL=1 • + TARG v(out) val=‘3.3/2' FALL=1 • .meas Tdelay param='(Tr+Tf)/2' • free format / case insensitive HSPICE(200010)

  4. ELEMENTS (I) • Independent Voltage / Current Source (DC) n1 n3 Idc n3 n4 20m 3.3V 20mA Vdc n1 n2 3.3 n4 n2 tpw v2 v1 tr tf tper td Pulse : Vpul n1 n2 pulse( v1 v2 td tr tf tpw tper ) HSPICE(200010)

  5. L W Perimeter / Area ELEMENTS - MOSFET (I) • MOSFET Mxxx D G S B MODEL W=x L=x[AS=x AD=x PS=x PD=x] HSPICE(200010)

  6. ELEMENTS - MOSFET (II) • Basic Knowledge LDD: Lightly Doped Drain HDIF LDIF HSPICE(200010)

  7. ELEMENTS - MOSFET (III) • Basic Knowledge ACM : Area Calculation Method ACM=3 GEO=2 GEO=3 GEO=1 LDIF HDIF HDIF W D S D S D S AD=2*HDIF*W AD=HDIF*W AD=HDIF*W AS=2*HDIF*W AS=HDIF*W AS=HDIF*W PD=4*HDIF+W PD=2*HDIF PD=2*HDIF PS=4*HDIF+W PS=2*HDIF PS=2*HDIF • Default GEO=0 HSPICE(200010)

  8. ELEMENTS - MOSFET (IV) vdd vdd ia zn ib n1 gnd • Example: • mp1 zn ia vdd vdd pch w=1.4u l=0.6u GEO=1 • mp2 zn ib vdd vdd pch w=1.4u l=0.6u GEO=1 • mn1 zn ib n1 gnd nch w=1.4u l=0.6u GEO=2 • mn2 n1 ia gnd gnd nch w=1.4u l=0.6u GEO=1 HSPICE(200010)

  9. SUBCIRCUIT • subcircuit definition • example .subckt inv 2 3 1 4 wp_inv=1.4u mp1 3 2 1 1 pch w=wp_inv l=0.6u mn1 3 2 4 4 nch w=1.4u l=0.6u .ends .subckt XOR3 5 8 6 1 2 3 99 * A B C s sb vds vss mp1 1 2 3 3 pch w=1.4u l=0.6u mn1 1 2 99 99 nch w=1.4u l=0.6u mp2 2 1 3 3 pch w=1.4u l=0.6u mn2 2 1 99 99 nch w=1.4u l=0.6u mn3 7 10 1 99 nch w=1.4u l=0.6u mn4 5 4 7 99 nch w=1.4u l=0.6u mn5 11 6 1 99 nch w=1.4u l=0.6u mn6 9 8 7 99 nch w=1.4u l=0.6u mn7 7 6 2 99 nch w=1.4u l=0.6u mn8 5 8 11 99 nch w=1.4u l=0.6u mn9 11 10 2 99 nch w=1.4u l=0.6u mna 9 4 11 99 nch w=1.4u l=0.6u xinvA 5 9 3 99 inv wp_inv=2.8u xinvB 8 4 3 99 inv wp_inv=2.8u xinvC 6 10 3 99 inv wp_inv=2.8u .ends • subcircuit call xinvX 5 9 3 99 inv wp_inv=2.8u xinvY 8 4 3 99 inv wp_inv=2.8u xinvZ 6 10 3 99 inv wp_inv=2.8u HSPICE(200010)

  10. MEASURE (I) • Trigger/Target • .MEAS TRAN T1 TRIG v(in) VAL=’2.5V’ TD=’20n' RISE=1 • + TARG v(out) VAL=’2.5V’ FALL=1 • .MEAS TRAN T2 TRIG v(in) VAL=’2.5V’ TD=’20n' FALL=1 • + TARG v(out) VAL=’2.5V’ RISE=1 • .MEAS Tpd PARAM='(T1+T2)/2’ • AVG/RMS/MIN/MAX/PP • .MEAS TRAN vomax MAX v(out) FROM=’20n’ TO=‘100n’ • .MEAS TRAN vomin MIN v(out) FROM=’20n’ TO=‘100n’ • .MEAS TRAN vorms RMS v(out) FROM=’20n’ TO=‘100n’ HSPICE(200010)

  11. MEASURE (II) • FIND/WHEN • .MEAS TRAN time1 WHEN v(out)=‘2.5V’ FALL=LAST • .MEAS TRAN time2 WHEN v(out)=‘2.5V’ CROSS=‘4’ • .MEAS TRAN v1 FIND v(out) AT=‘50n’ HSPICE(200010)

  12. Power Measurement • Basic Power Meter • Practical Power Meter *REFERENCE Ry=1e15 Cy=1e-12 HSPICE(200010)

  13. ANALYSIS TYPE • Transient analysis .TRAN 0.1n 100n UIC • Operating Point .OP • DC Sweep .DC vin 1V 5V 0.5V • AC small signal analysis .AC LIN 1K 100MEG • .AC DEC 1K 100MEG HSPICE(200010)

  14. OTHER COMMAND CARD • OPTION for Accuracy • .OPTIONs absmos=1p absv=1p relmos=1u relv=1p relvar=1m • Temperature • .TEMP 100 ( default 25 degree C ) • Graphic Output for “AWAVES” • Plot all input, output and internal nodes .OPTIONs POST • Plot specified nodes .OPTIONs POST PROBE .PROBE v(1) V(2) V(3) V(4) V(5) HSPICE(200010)

  15. INVOKING HSPICE • Executing HSPICE • % hspice myfile.spà • Output files • *.tr? graphic output files for awaves • *.mt? measure output files (TXT file) HSPICE(200010)

More Related