1 / 16

CP = E[ s 2 , s 5 , s 1 , s 3 , s 2 ’ , s 3 ’ , s 4 , s 1 ’ , s 4 ’ , s 5 ’ ] S[] I[]

s 2. s 5. s 1. s 3. s 2 ’. s 3 ’. s 4. s 1 ’. s 4 ’. s 5 ’. Plane Sweep Algorithm for Line-Segment Intersection Problem. CP = E[ s 2 , s 5 , s 1 , s 3 , s 2 ’ , s 3 ’ , s 4 , s 1 ’ , s 4 ’ , s 5 ’ ] S[] I[]. CP=Current Point E=Event Queue S=Status Queue I=Intersection List.

Download Presentation

CP = E[ s 2 , s 5 , s 1 , s 3 , s 2 ’ , s 3 ’ , s 4 , s 1 ’ , s 4 ’ , s 5 ’ ] S[] I[]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Plane Sweep Algorithm for Line-Segment Intersection Problem CP = E[ s2 , s5 , s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[] I[] CP=Current Point E=Event Queue S=Status Queue I=Intersection List

  2. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = E[ s2 , s5 , s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ ] I[ ] New CP = s2 E[ s2 , s5 , s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 ] I[ ]

  3. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ previous sweep line Previous CP = s2 E[ s5 , s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 ] I[ ] new sweep line New CP = s5 E[ s5 , s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s5 ] I[ ] Compare s2 with s5 => no intersection

  4. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s5 E[ s1 , s3 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s5 ] I[ ] s21 New CP = s1 E[ s1 , s3 , s21, s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1, s5 ] I[s21 ] Compare s`1 with s2 => s21 Compare s`1 with s5 => no intersection

  5. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s1 E[ s3 , s21 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1 , s5 ] I[s21 ] s21 s53 New CP = s3 E[ s3 , s53 , s21 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1 , s5 , s3 ] I[s21 , s53 ] Compare s`3 with s5 => s53

  6. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s3 E[ s53 , s21 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1 , s5 , s3 ] I[s21 , s53 ] s21 s53 New CP = s53 E[ s53 , s21 , s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1 , s3 , s5] I[s21 , s53 , s13 ] s13 Compare s`3 with s1 => s13

  7. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s53 E[ s21 , s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s2 , s1 , s3 , s5 ] I[s21 , s53 , s13 ] s21 s53 New CP = s21 E[ s21 , s23 , s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s1 , s2, s3 , s5 ] I[s21 , s53 , s13 , s23 ] s23 s13 Compare s`2 with s3 => s23

  8. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s21 E[ s23 , s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s1 , s2 , s3 , s5 ] I[s21 , s53 , s13 , s23 ] s21 s53 New CP = s23 E[ s23 , s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s1 , s3 , s2, s5 ] I[s21 , s53 , s13 , s23 ] s23 s13 Compare s`3 with s1 => s13 (already in the list) Compare s`2 with s5 => no intersection

  9. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s23 E[ s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s1 , s3 , s2 , s5 ] I[s21 , s53 , s13 , s23 ] s21 s53 New CP = s13 E[ s13 , s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s3 , s1, s2 , s5 ] I[s21 , s53 , s13 , s23 ] s23 s13 Compare s`1 with s2 => s21 (already in the list)

  10. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s13 E[ s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s3 , s1 , s2 , s5 ] I[s21 , s53 , s13 , s23 ] s21 s53 New CP = s2’ E[ s2’ , s3’ , s4 , s1’ , s4’ , s5’ ] S[ s3 , s1 , s2 , s5 ] I[s21 , s53 , s13 , s23 ] s23 s13 Compare s`1 with s5 => no intersection

  11. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s2’ E[ s3’ , s4 , s1’ , s4’ , s5’ ] S[ s3 , s1 , s5 ] I[s21 , s53 , s13 , s23 ] s21 s53 New CP = s3’ E[ s3’ , s4 , s1’ , s4’ , s5’ ] S[ s3 , s1 , s5 ] I[s21 , s53 , s13 , s23 ] s23 s13

  12. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s3’ E[ s4 , s1’ , s4’ , s5’ ] S[ s1 , s5 ] I[s21 , s53 , s13 , s23 ] s21 s53 New CP = s4 E[ s4 , s54 , s1’ , s4’ , s5’ ] S[ s1 , s5 , s4 ] I[s21 , s53 , s13 , s23 , s54 ] s23 s13 s54 Compare s`4 with s5 => s54

  13. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s4 E[ s54 , s1’ , s4’ , s5’ ] S[ s1 , s5 , s4 ] I[s21 , s53 , s13 , s23 , s54 ] s21 s53 New CP = s54 E[ s54 , s1’ , s4’ , s5’ ] S[ s1 , s4 , s5] I[s21 , s53 , s13 , s23 , s54 ] s23 s13 s54 Compare s`4 with s1 => no intersection

  14. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s54 E[ s1’ , s4’ , s5’ ] S[ s1 , s4 , s5 ] I[s21 , s53 , s13 , s23 , s54 ] s21 s53 New CP = s1’ E[ s1’ , s4’ , s5’ ] S[ s1 , s4 , s5 ] I[s21 , s53 , s13 , s23 , s54 ] s23 s13 s54

  15. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s1’ E[ s4’ , s5’ ] S[ s4 , s5 ] I[s21 , s53 , s13 , s23 , s54 ] s21 s53 New CP = s4’ E[ s4’ , s5’ ] S[ s4 , s5 ] I[s21 , s53 , s13 , s23 , s54 ] s23 s13 s54

  16. s2 s5 s1 s3 s2’ s3’ s4 s1’ s4’ s5’ Previous CP = s4’ E[ s5’ ] S[ s5 ] I[s21 , s53 , s13 , s23 , s54 ] s21 s53 New CP = s5’ E[ s5’ ] S[ s5 ] I[s21 , s53 , s13 , s23 , s54 ] s23 s13 s54 Event Queue Is Empty, therefore STOP

More Related