380 likes | 661 Views
Effect OF LITHIUM FLUORIDE ON THE DIELECTRIC PROPERTIES OF BARIUM TITANATE. Laldja TAÏBI – BENZIADA (http://perso.usthb.dz/~lbenziada) Faculty of Chemistry , USTHB, Algiers , ALGERIA. IUPAC 9 th International Conference on Novel Materials and Synthesis (NMS – IX)
E N D
Effect OF LITHIUM FLUORIDE ON THE DIELECTRIC PROPERTIES OF BARIUM TITANATE Laldja TAÏBI – BENZIADA (http://perso.usthb.dz/~lbenziada) Faculty of Chemistry, USTHB, Algiers, ALGERIA IUPAC 9th International Conference on NovelMaterials and Synthesis (NMS – IX) October17 – 22 , 2013, Shanghai, CHINA
summary • Introduction • Experimentalprocedures • Results and discussion • Conclusion • References
Interest for materials • Materials have alwaysrepresented an essential aspect of human society. • Nowadays, the materialbecamesynonymouswithexistence for anyindustry. • In new technologies of informations and communications, the progress and successare closelylinked to the development of advancedceramicswithhigher and higher performances but alsowithlower and lowerfactorycost.
Ceramicsproducts Conventionalceramics Microstructure Engineering ceramics
Abo3relatedmaterials • Amongthese new technicalceramics, ABO3perovskites and theirsolid solutions are very attractive for microelectronicindustry. • With the devicesminiaturization, ATiO3 ceramicsbecame the key materials for the development of smart systemswithartificial intelligence. • Up to now, the variedPZT have dominated the market of microelectronic components. However, the toxicity of Pbis a seriousthreat to humanhealthand environment.
Applications of Abo3 perovskites • Capacitors • Sensors • Resonators • Piezoelectricactuators • Pyroelectricinfrared detectors • Electro-opticalmodulators • Computer and mobile phone memories… FRAMs
Computer’smemories T. Shiosaki, The recentprogress in the research and development for ferroelectric memory in Japan (1997)
objectives • To lowerboth the sinteringtemperature (Tsint. ~ 1400 ° C) and the ferroelectric Curie temperature (TC = 120 ° C) of BaTiO3 ceramicsusingLiF as additive. • To reinvestigate the effect of lithium fluoride on dielectricpropertiesof BaTiO3 ceramicssintered in various conditions.
BaTiO3 properties • Phase transitions : RhombohedralOrthorhombicTetragonalCubic • Ferroelectric Curie temperature : TC = 393 K • Relaxation frequency : fr= 500 MHz • Symmetryat room temperature: Tetragonal 193 K 278 K 393 K
O Ti Ba BaTiO3 unit cellat 300 k a = 3.998 Å c = 4.018 Å
Samplespreparations • Barium titanate withvarious ratio BaO/TiO2waspreviouslysynthesized by calcination of BaCO3 and TiO2at1100 ° C: 0.97 BaCO3 + TiO20.97 BaTiO3 + 0.03 TiO2 + 0.97 CO2 (BT0 0.97) BaCO3+ TiO2 BaTiO3 + CO2(BT0 1.00) 1.03 BaCO3 + TiO2 BaTiO3+ 0.03 BaO + CO2 (BT0 1.03) • Severalchemical compositions werethenpreparedfrom the variedBTO and LiFthenwet-groundin ethanol : (1-x) wt. % BTO + x wt. % LiF • The powder mixtures were cold-pressed to pellets with an organic binder. The disksthusobtainedweresintered in various conditions.
x BaCO3 + y TiO2 Grinding, Calcination 1100 °C x wt. % LiF BaTiO3+CO2 (1-x) % BaTiO3 + x % LiF Grinding Sintering(T °C) Ba(Ti, Li)(O, F)3
Methods of investigations • X-ray diffraction analyzeswerecarried out at room temperature on crushedceramics in the 2 range 10 – 90 °. • Scanning Electron Microscopyobservations wereperformed on fracturedceramics. • Dielectricmeasurementswerecarried out under vacuum at 1 kHz between 180 K and 500 K. • Ceramicswereinvestigated by Auger microprobeand thermal analyses. • Chemical analyseswereperformed and fluorine and lithium losseswerecalculated.
DRX spectra of BaTiO3 ceramicssinteredwith 2 wt. % LiF at 950 ° C for 2 h BTO (1.03) BTO (1.00) • The unit cellremainstetrago-nal for BTO(0.97). • The latticesymmetrybecomescubic for BTO (1.00)and BTO (1.03). BTO (0.97) 2 (°)
Effect of BaO/TiO2 ratio on the permittivity of BaTiO3 ceramicssinteredwith 2 wt. % LiF at 950 ° C for 2 h • Excess of TiO2inhibits the sintering and’r. • Excessof BaOenhancesthe sintering and ’r. • The best dielectriccharacteristics are obtainedwithBTO (1.03)
Effect of LiF amount on permittivityof BaTiO3 (1.00) ceramicssinteredat 950 ° C for 2 h • ispractically constant. • TCdecreases and ’r increases. • The best dielectriccharacteristics are observedwith3 wt. % of LiF.
Effect of LiF amount on permittivityof BaTiO3 (1.03) ceramicssinteredat 950 ° C for 2 h • isverylow for 1 wt. % of LiF . • TCdecreases and ’r increases. • The best dielectriccharacteristics are obtainedwith3 wt. % of LiF.
Effect of holding time on permittivityof BaTiO3 (1.00) ceramicssinteredwith 2 wt. % LiF at 950 ° C • increasesslightly. • TCincreasesand ’r decreases. • The best dielectriccharacteris-tics are obtained for tsint. =2 h.
Effect of holding time on permittivityof BaTiO3 (1.03) ceramicssinteredwith 2 wt. % LiF at 950 ° C • increasesslightly. • TCincreasesand ’r decreases. • The best dielectriccharacteris-tics are obtained for tsint. =2 h.
Effect of sinteringtemperature on permittivityof BaTiO3 (1.00) ceramicssinteredwith 2 wt. % LiF for 2 h • increases. • TCdecreases and ’r increases. • The best dielectriccharacteristics are obtained for Tsint. =1100 ° C.
Effect of sinteringtemperature on permittivityof BaTiO3 (1.03) ceramicssinteredwith 2 wt. % LiF for 2 h • increases. • TCdecreases and ’r increasesthendecreases. • The best dielectriccharacteristics are obtained for Tsint. =950° C.
Temperaturedependence of permittivity and losses for BaTiO3 (1.03) ceramicsinteredwith 2 wt. % LiF at 950 ° C for 2 h in free air
Effect of sinteringatmosphere on permittivityof BaTiO3 (1.03) ceramicssinteredat 950 °C with2 wt. % LiF for 2 h • The best shrinkageand the bestdielectriccharacteris-tics are obtainedwhensinteringisperformed in free air.
Temperaturedependence of permittivityof BaTiO3 (1.03) ceramicssinteredwith 2 wt. % LiF in various conditions • The bestdielectriccharacteris-tics are obtainedwhensinteringisperformedat950 °C for 2 h in free airthenat1200 °C in sealed tube for 2 h.
Chemical composition, fluorine and lithium losses of BTO (1.03) ceramicssinteredwith 2 wt. % LiF for 2 h atvarioustemperatures • Li and F lossesincreasewithincreasing the sinteringtemperature. Lilosses are more important thanthose of F.
DTA and TG thermograms of 98 wt. % BTO (1.03) + 2 wt. % LiF • The exothermicpeakat280 °C isprobably due to the hydrolysis of LiF: LiF + H2O LiOH + HF • The endothermicpeakataround630 °C isascribed to Liand Flosses. • The weightlossreaches50 % afterheatingat950 °C for 2 h. 280 °C DTA 630 °C TG
Micrographs of ceramicssinteredat 850 or 950 °C 950°C 98 wt. % BTO (1.03) + 2 wt. % LiF 98 wt. % BTO (1.03) + 2 wt. % LiF 850°C • The grain size increases and the porositydecreaseswithincreasing the sinteringtemperature.
Auger spectra of BaTiO3 (1.03) fracturedceramicssinteredwith 2 wt. % LiF at950 ° C for 2 h Beforesputtering Aftersputtering • Ba, Li, O, Tiand Felements are detected and a composition gradientisobserved in the grains.
The effect of LiF on dielectricproperties of BaTiO3withdifferent ratio BaO/TiO2and sintered in various conditions has been reinvestigated. • As result, an excess of TiO2inhibits the sinteringprocess and the permittivity. On the other hand,BaOexcessenhancesboth the densification and the dielectriccharacteristics. The best densification isobtainedwithBTO (1.03). • The addition of LiF to BTO (1.00) or BTO (1.03) lowerssimultaneously the sintering and the ferroelectric Curie temperatures. • BTO (1.00) or BTO (1.03) ceramics display rounded and broad maxima due to composition gradient in the grains. • The ceramics of BTO (1.03) sinteredwith2 wt. % of LiFat950 ° C for 2 h couldbeused for Z5Umultilayercapacitorsmanufacturing.
Norms of type ii class z5u capacitors 98 wt. % BTO (1.03) + 2 wt. % LiF, 950 °C, 2 h • Ferroelectricdielectric • 5000 ’r (293K) 9000 • ’r(T) - ’r (293K) / ’r (293K) = + 22 % at283 K • ’r (T) - ’r (293K) / ’r (293K) = - 56 %at356 K • Tan (293K) 2.5 % + 22 % Z5U - 56 %
[1] J. M. Haussonne, G. Desgardin, PH. Bajolet, B. Raveau, JACS, 1983, 66 (11): 801. • [2] L. Benziada, Thèse de doctorat, 1987. • [3] S-F. Wang, K-C. Cheng, Journal of the Chinese Institute of Engineers, 1999, 22(1): 61. • [4] S-F. Wang, T.C.K. Yang, W. Huebner, J.P. Chu, J. Mater. Res., 2000, 15(2):407. • [5] L. Zhang, J. Zhai, X. Yao, ferroelectrics, 2009, 384: 153. • [6] H. Naghib-zadeh, C. Glitzky, I. Dörfel, T. Rabe, JECS, 2010, 30: 81. • [7] G. Liu, Y. Jiang, T.W. Button, Ferroelectrics, 2011, 421: 72.
THANK YOU FOR YOUR ATTENTION PEACE WORLDWIDE