320 likes | 482 Views
WP3 : Flood Propagation Computation On The ‘Isolated Building Test Case’ And The ‘ Model City Flooding Experiment ’. B. Noël, Soares S., Y. Zech Université catholique de Louvain. Overview. Numerical Model The ‘Isolated Building Benchmark’ Numerical modelling Numerical results
E N D
WP3 : Flood PropagationComputation On The ‘Isolated Building Test Case’ And The ‘Model City Flooding Experiment ’ B. Noël, Soares S., Y. Zech Université catholique de Louvain
Overview • Numerical Model • The ‘Isolated Building Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis • The ‘Model City Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis
Overview • Numerical Model • The ‘Isolated Building Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis • The ‘Model City Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis
Numerical Model • 2D finite-volume method • First-order scheme • Flux evaluated by Roe’s scheme • Non-Cartesian grids allowed ‘Soares Frazão S., 2002 PHD Thesis ’
Overview • Numerical Model • The ‘Isolated Building Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis • The ‘Model City Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis
Square meshes Quadrangular meshes The ‘Isolated Building Benchmark’ • Numerical modelling (2-mesh grid) • Grid :
The ‘Isolated Building Benchmark’ • Numerical modelling • Building neighbouring
The ‘Isolated Building Benchmark’ • Numerical modelling • Grid mean size : 5 x 5 cm • CFL number : 0.9 • Time duration : ± 2 h • CPU : AMD XP1800+ (128Mb)
The ‘Isolated Building Benchmark’ • Numerical results
The ‘Isolated Building Benchmark’ • Numerical results • Water level :
The ‘Isolated Building Benchmark’ • Numerical results • Water level (t = 10 s) :
The ‘Isolated Building Benchmark’ • Numerical results • Velocity field (t = 5 s) : Numerical Experimental Noël, Spinewine 2003 - UCL
The ‘Isolated Building Benchmark’ • Numerical results • Velocity Intensity (t = 5 s) : Numerical Experimental Noël, Spinewine 2003 - UCL
The ‘Isolated Building Benchmark’ • Sensitivity analysis • Manning roughness coefficient
The ‘Isolated Building Benchmark’ • Sensitivity analysis • Initial downstream water-depth
Overview • Numerical Model • The ‘Isolated Building Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis • The ‘Model City Benchmark’ • Numerical modelling • Numerical results • Sensitivity analysis
The ‘Model City Benchmark’ • Numerical modelling (channelled) Mesh XXX
The ‘Model City Benchmark’ • Numerical modelling (10-mesh grid) Mesh XXX
The ‘Model City Benchmark’ • Numerical modelling (original) Mesh XXX
The ‘Model City Benchmark’ • Numerical modelling (10-mesh grid)
The ‘Model City Benchmark’ • Numerical modelling • Topography reconstruction
The ‘Model City Benchmark’ • Numerical modelling • Upstream reservoir • Dimensions : unknown but seen on picture about 1 meter of longitudinal length lateral bed level similar to the bed level of upstream end of channel • Best way to model : decrease bed level of feeding tank and fill it with water at rest numerical crash at corner of reservoir
Walls Inlet Walls The ‘Model City Benchmark’ • Numerical modelling • Upstream reservoir • bed level of the upstream end of channel • Inlet introduced at the upstream end of the prolonged channel
The ‘Model City Benchmark’ • Numerical modelling • Grid mean size : 2.5 x 2.5 cm • CFL number : 0.1 • Time duration : ± 5h. • Computer : AMD XP1800+ (128Mb)
The ‘Model City Benchmark’ • Numerical results • Test cases 1a & 1b (t = 20 s) : Staggered layer : - velocity decreased - water level increased in the building layer
The ‘Model City Benchmark’ • Numerical results • Test cases 2a & 2b (t = 20 s) : Staggered layer : - velocity decreased - water level increased in the building layer
The ‘Model City Benchmark’ • Numerical results • Test cases 3a & 3b (t = 20 s) : Low inflow : 60 l/s High inflow : 100 l/s
The ‘Model City Benchmark’ • Numerical results • Test cases 4a & 4b (t = 20 s) : Buildings as bed elevation (15 cm):
The ‘Model City Benchmark’ • Numerical results • Test cases 4a & 4c (t = 20 s) : High friction (n = 10 s/m1/3): - water lost in buildings - maximum water level moves downstream and is a few decreased
The ‘Model City Benchmark’ • Sensitivity analysis • Downstream boundary condition
WP3 : Flood PropagationComputation On The ‘Isolated Building Test Case’ And The ‘Model City Flooding Experiment ’ B. Noël, Soares S., Y. Zech Université catholique de Louvain