470 likes | 624 Views
Part 2. Music Processing with MPEG-7 Low Level Audio Descriptors Dr. Michael Casey Centre for Computational Creativity Department of Computing City University, London. MPEG-7 Software Tools. ISO 15938-6 (Reference Software C++) http://www.lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.html
E N D
Part 2 Music Processing with MPEG-7 Low Level Audio Descriptors Dr. Michael Casey Centre for Computational Creativity Department of Computing City University, London
MPEG-7 Software Tools • ISO 15938-6 (Reference Software C++) • http://www.lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.html • Audio Only Reference Software (Matlab) • http://ccc.soi.city.ac.uk/mpeg7 (City University Mirror)
Audio Descriptions Header
Audio Descriptions Segments
Audio Descriptions Descriptor
AudioSegmentType AudioDSType AudioLLDScalarType AudioDType AudioLLDVectorType SeriesOfScalarType SeriesOfVectorType ScalableSeriesType Containment Hierarchy for Audio Descriptors
Some Useful Descriptors for Music Processing • AudioSpectrumEnvelopeD • AudioSpectrumBasisD • AudioSpectrumProjectionD • SoundModelDS • SoundModelStatePathD • SoundModelStateHistogramD
Other Useful Descriptors for Music Processing • AudioSpectrumFlatnessD • AudioHarmonicityD • AudioSpectrumCentroidD
AudioSpectrumEnvelopeD • Log frequency scale spectral power coefficients • Total power preserved across logarithmic bands
AudioSpectrumEnvelopeD [AudioSpectrumEnvelope, attributegrp, map, XMLFile] = AudioSpectrumEnvelopeType(audioFile,hopSize,attributegrp,writeXML,XMLFile,map) This function determines an AudioSpectrumEnvelope and also returns the map from linear to log bands. % EXAMPLE 1: AudioSpectrumEnvelopeD extraction ag.octaveResolution='1/4'; ag.loEdge=62.5; ag.hiEdge=8000; hopSize='PT10N1000F'; fname='e:\Beatles\1\000100.wav'; [ASE,ag]=AudioSpectrumEnvelopeD(fname,hopSize,ag,1,'ase.xml');
AudioSpectrumEnvelopeD . . .
AudioSpectrumBasisD AudioSpectrumBasisD SVD / ICA Basis Rotation AudioSpectrumProjectionD
AudioSpectrumBasisD AudioSpectrumBasisType -independent components of a spectrum matrix [V,env]=AudioSpectrumBasis(X, k, DDL_FLAG) Inputs: X - spectrum data matrix ( t x n, t=time points, n=spectral channels) k - number of components to extract DDL_FLAG - 1=write XML output. [0] Outputs V - n x k matrix of basis functions env - L2-norm envelope of log Spectrogram data (required for MPEG7) % EXAMPLE2: AudioSpectrumBasisD [ASB,env]=AudioSpectrumBasisD(ASE,10,'asb.xml');
AudioSpectrumProjectionD AudioSpectrumBasisD SVD / ICA Basis Rotation AudioSpectrumProjectionD
AudioSpectrumProjectionD [P,maxenv] = AudioSpectrumProjectionD(X, V, XML) Inputs X = t x n matrix containing AudioSpectrumEnvelopeD values: t=timepoints,n=frequency bins V = n x k matrix containing AudioSpectrumBasisD values n=frequency bins, k=basis functions DDL_FLAG XML file name [optional] Output P = t x (1 + k) matrix where each row contains 1 x L2-norm envelope coefficient and k x spectral projection coefficients. % EXAMPLE3: AudioSpectrumProjectionD extraction [ASP,maxEnv]=AudioSpectrumProjectionD(ASE,ASB,'asp.xml');
Basis Reduction Independent Spectrum Basis Features Time Function Reconstruction 1 Component Spectral Feature High Channel Spectrogram 4 Components 10 Components
Outer Product Spectrum Reconstruction Individual Basis Component
Music Unmixing • Linear basis projection using SVD and ICA • spectrum subspace separation • fast computation of subspace ICA • full-rate filterbank masking • Blocked ICA functions • subspace reconstruction Y = XVV • cluster subspaces to identify “tracks” • sum masked filterbank output to create audio + j j j
Drum Mixture dB Music Unmixing Example 1
Music Unmixing Example 2(Pink Floyd: stereo -> 9 subspace tracks)
1 2 3 4 Sound Model DSand related descriptors AudioSpectrumBasisD ContinuousHiddenMarkovModelDS SoundModelStatePathD x 1 3 3 2 2 3 4 4 4 4 ... T(i,j) AudioSpectrumEnvelopeD AudioSpectrumProjectionD
SoundModelDS - Bayesean inference of HMM parameters from training data Y = SoundModelDS(TrainingDataListFile, nS, nB [,OPTIONAL ARGUMENTS...]) INPUTS: TrainingDataList - filename of training data list: WAV file names (one per line). nS - number of states in hidden Markov model [10] nB - number of basis components to extract [10] The following variables are optional, and are specified using ['parameter', value pairs] on the command line. 'hopSize' 'PT10N1000F' - AudioSpectrumEnvelopeD hopSize 'loEdge' 62.5, - AudioSpectrumEnvelopeD low Hz 'hiEdge' 16000, - AudioSpectrumEnvelopeD high Hz 'octaveResolution' '1/8' - AudioSpectrumEnvelopeD resolution 'sequenceHopSize' '', - HMM data window hop [whole file] 'sequenceFrameLength' '' - HMM data window length [whole file] 'outputFile' '' - Filename for Model output [stem+mp7.xml] 'soundName' '' - Model identifier name OUTPUTS: outputFile.dat = matlab struct Y.{T,S,M,C,X,maxenv,V,p} T - state transition matrix S - initial state probability vector M - stacked means matrix (1 vector per row) C - stacked inverse covariances V - AudioSpectrumBasis vectors maxenv- scaling parameter for model decoding p - training cycle likelihoods outputFile.mp7 = XML file containing MPEG-7 SoundModel description scheme
SoundModelDS - Bayesean inference of HMM parameters from training data Y = SoundModelDS(TrainingDataListFile, nS, nB [,OPTIONAL ARGUMENTS...]) INPUTS: TrainingDataList - filename of training data list: WAV file names (one per line). nS - number of states in hidden Markov model [10] nB - number of basis components to extract [10] The following variables are optional, and are specified using ['parameter', value pairs] on the command line. 'hopSize' 'PT10N1000F' - AudioSpectrumEnvelopeD hopSize 'loEdge' 62.5, - AudioSpectrumEnvelopeD low Hz 'hiEdge' 16000, - AudioSpectrumEnvelopeD high Hz 'octaveResolution' '1/8' - AudioSpectrumEnvelopeD resolution 'sequenceHopSize' '', - HMM data window hop [whole file] 'sequenceFrameLength' '' - HMM data window length [whole file] 'outputFile' '' - Filename for Model output [stem+mp7.xml] 'soundName' '' - Model identifier name OUTPUTS: outputFile.dat = matlab struct Y.{T,S,M,C,X,maxenv,V,p} T - state transition matrix S - initial state probability vector M - stacked means matrix (1 vector per row) C - stacked inverse covariances V - AudioSpectrumBasis vectors maxenv- scaling parameter for model decoding p - training cycle likelihoods outputFile.mp7 = XML file containing MPEG-7 SoundModel description scheme Process Small Chunks = Local Dynamics Model
SoundModelStatePathD A simplified representation of spectral dynamics State Path
SoundModelStatePathD [Path,loglike]=SoundModelStatePathD(soundfilename, arg2 [,OPTIONAL ARGS]) Compute HMM State Path and log likelihood of sequence data Inputs: soundfilename - filename of input sound (.wav or .au) arg2 - SoundModelDS structure or filename of binary SoundModelDS instance (.mat) The following variables are optional, and are specified using 'parameter' value pairs on the command line. 'hopSize' 'PT10N1000F' 'loEdge' 62.5, 'hiEdge' 16000, 'octaveResolution' '1/8' 'sequenceHopSize' '', 'sequenceFrameLength' '' % EXAMPLE 5: SoundModelStatePathD extraction [Path,ll]=SoundModelStatePathD(fname,Y,'octaveResolution','1/4','hiEdge',8000);
SoundModelStatePathD BEATLES: A Hard Day’s Night state index seconds state index 0.01s Frames
SoundModelStateHistogramD SoundModelStateHistogramD(Path, Nstates, [segSkip], [segLen]) Extract normalized segmental state-path histograms Inputs: Path - SondModelStatePathD output Nstates - Number of states in SoundModel [segSkip] - hop size in samples [segLen] - histogram length in samples Outputs: H - t x n matrix containing segmented state occupancy histograms t=time points, n=states % EXAMPLE 6: SoundModelStateHistogramD extraction H=SoundModelStateHistogramD(Path,10,100,1000);
SoundModelStateHistogramD state index 0.01s Frames state index seconds
S-Matrix • Similarity Function • Segmented Histograms are Unit Norm • Outer Product Computes Similarity Matrix >>size(H) ans = 137 10 >>S = H * H’ ; % Similarity Matrix >>imagesc(S); >>D = real(acos(S)); % Dissimilarity Matrix
Sound Replacement and Audio Mosaics • Find segments similar to target segment • Similarity Scores Computed between Histograms. • Cluster with k-means or pair-wise clustering. • Replace with similar (but different) material • Segmentation boundaries (beat alignment) • EXAMPLES
Acknowledgements • International Standards Organisation • ISO/IEC JTC 1 SC29 WG11 (MPEG) • Mitsubishi Electric Research Labs • Massachusetts Institute of Technology • Music Mind Machine Group (formerly Machine Listening Group) • Paris Smaragdis, Youngmoo Kim, Brian Whitman • Iroro Orife, John Hershey, Alex Westner, Kevin Wilson • City University • Deparment of Computing • Centre for Computational Creativity