350 likes | 617 Views
GSI BE and CV3 BE New gen_be Utility for regional WRF GSI BE Yong-Run Guo NCAR/MMM Presented in Taiwan Typhoon and Flood Research Institute, Taiwan 18 April 2011 Thanks to Maxine Chen, CWB. Outline GSI Global BE and CV3 BE Content Setup Utilization
E N D
GSI BE and CV3 BE New gen_be Utility for regional WRF GSI BE Yong-Run Guo NCAR/MMM Presented in Taiwan Typhoon and Flood Research Institute, Taiwan 18 April 2011 Thanks to Maxine Chen, CWB
Outline • GSI Global BE and CV3 BE • Content • Setup • Utilization • New “gen_be” utility for regional • WRF-GSI-BE • Code explanation • Running “gen_be”
Content of the BE file • # of σ levels (42) and # of latitudes φ (192) • Definition of σ levels and latitudes φ • Regression coefficients: bv for χ, agv for T, wgv for Ps • Satndard deviation: corz, cord, corh, corq for Ψ, χu, Tu, rh, and corp for Psu. • Horizontal length-scales: hwll for Ψ, χu, Tu, rh, and hwllp for Psu • Inverse of the vertical length-scales: vztdq for Ψ, χu, Tu, rh • Differences between GSI Global BE and CV3 BE files • Differences in setup background error statistics between GSI • and WRFDA
Vertical coordinates: ηk and log(ηk) ηk Δη=0.5*(ηk-1-ηk+1) log(ηk) Δ{log(ηk)}=0.5*{log(ηk-1)-log(ηk+1)}
number of latitude nlath = 96 1 lat_avn = -90.000 2 lat_avn = -89.277 3 lat_avn = -88.340 4 lat_avn = -87.397 5 lat_avn = -86.454 6 lat_avn = -85.509 7 lat_avn = -84.565 8 lat_avn = -83.620 9 lat_avn = -82.676 10 lat_avn = -81.731 11 lat_avn = -80.786 ……………………………. 170 lat_avn = 69.448 171 lat_avn = 70.393 172 lat_avn = 71.338 173 lat_avn = 72.283 174 lat_avn = 73.228 175 lat_avn = 74.173 176 lat_avn = 75.117 177 lat_avn = 76.062 178 lat_avn = 77.007 179 lat_avn = 77.952 180 lat_avn = 78.897 181 lat_avn = 79.841 182 lat_avn = 80.786 183 lat_avn = 81.731 184 lat_avn = 82.676 185 lat_avn = 83.620 186 lat_avn = 84.565 187 lat_avn = 85.509 188 lat_avn = 86.454 189 lat_avn = 87.397 190 lat_avn = 88.340 191 lat_avn = 89.277 192 lat_avn = 90.000 S 91 lat_avn = -5.197 92 lat_avn = -4.252 93 lat_avn = -3.307 94 lat_avn = -2.362 95 lat_avn = -1.417 96 lat_avn = -0.472 97 lat_avn = 0.472 98 lat_avn = 1.417 99 lat_avn = 2.362 100 lat_avn = 3.307 101 lat_avn = 4.252 102 lat_avn = 5.197 N
Precision: GSI_Global BE --- 4 bytes; CV3 BE --- 8 bytes. • Vertical length-scale: GSI_Global BE --- normalized with Δ{log(σk)}; so • prewgt_reg.f90 • Control variable: GSI_Global BE --- Psfc in KPa; • CV3 BE --- log(Psfc) or Psfc in MPa. • The regression coefficients wgvand standard deviation corp in CV3 BE is two order less than that in GSI Global BE. • In WRF, the unit of Psfc is always Pascal: • With GSI_Global BE: wrwrfmassa.F90/subroutine wrwrfmassa_netcdf • balmod.f90/subroutine balance • With CV3 BE: da_vtox_transforms/da_transform_bal.inc
Vertical scle vz GSI_Global BE CV3 BE k= 1 dsig= 0.86844E-02 Before var= 1 lat= -43.94 vztdq= 0.11556E+02 After var= 1 lat= -43.94 vztdq= 0.10036E+00 Before var= 2 lat= -43.94 vztdq= 0.29691E+02 After var= 2 lat= -43.94 vztdq= 0.25784E+00 Before var= 3 lat= -43.94 vztdq= 0.23002E+02 After var= 3 lat= -43.94 vztdq= 0.19976E+00 Before var= 4 lat= -43.94 vztdq= 0.17708E+02 After var= 4 lat= -43.94 vztdq= 0.15378E+00 k= 2 dsig= 0.93896E-02 Before var= 1 lat= -43.94 vztdq= 0.86159E+01 After var= 1 lat= -43.94 vztdq= 0.80900E-01 Before var= 2 lat= -43.94 vztdq= 0.24263E+02 After var= 2 lat= -43.94 vztdq= 0.22782E+00 Before var= 3 lat= -43.94 vztdq= 0.19185E+02 After var= 3 lat= -43.94 vztdq= 0.18014E+00 Before var= 4 lat= -43.94 vztdq= 0.14026E+02 After var= 4 lat= -43.94 vztdq= 0.13169E+00 ……………………………………………………………. k= 1 sigma_avn= 0.99597E+00 Before var= 1 lat= -43.94 vztdq= 0.10036E+00 Before var= 2 lat= -43.94 vztdq= 0.25785E+00 Before var= 3 lat= -43.94 vztdq= 0.19976E+00 Before var= 4 lat= -43.94 vztdq= 0.15378E+00 k= 2 sigma_avn= 0.98736E+00 Before var= 1 lat= -43.94 vztdq= 0.80900E-01 Before var= 2 lat= -43.94 vztdq= 0.22782E+00 Before var= 3 lat= -43.94 vztdq= 0.18014E+00 Before var= 4 lat= -43.94 vztdq= 0.13169E+00 ……………………………………………………….. k= 42 dsig= 0.13204E+01 Before var= 1 lat= -43.94 vztdq= 0.13650E+01 After var= 1 lat= -43.94 vztdq= 0.18023E+01 Before var= 2 lat= -43.94 vztdq= 0.35083E+01 After var= 2 lat= -43.94 vztdq= 0.46323E+01 Before var= 3 lat= -43.94 vztdq= 0.40140E+01 After var= 3 lat= -43.94 vztdq= 0.53000E+01 Before var= 4 lat= -43.94 vztdq= 0.24647E+01 After var= 4 lat= -43.94 vztdq= 0.32543E+01 k= 42 sigma_avn= 0.20420E-02 Before var= 1 lat= -43.94 vztdq= 0.18023E+01 Before var= 2 lat= -43.94 vztdq= 0.46323E+01 Before var= 3 lat= -43.94 vztdq= 0.53000E+01 Before var= 4 lat= -43.94 vztdq= 0.32543E+01
Standard deviation for surface pressure corp GSI_Global BE with unit of centibar CV3 BE with unit of (100 x centibar) 1 clat= -90.00 corp= 0.928118E-01 2 clat= -89.28 corp= 0.938211E-01 3 clat= -88.34 corp= 0.948147E-01 4 clat= -87.40 corp= 0.958127E-01 5 clat= -86.45 corp= 0.968144E-01 6 clat= -85.51 corp= 0.978026E-01 7 clat= -84.56 corp= 0.987512E-01 8 clat= -83.62 corp= 0.996334E-01 9 clat= -82.68 corp= 0.100429E+00 10 clat= -81.73 corp= 0.101132E+00 11 clat= -80.79 corp= 0.101749E+00 12 clat= -79.84 corp= 0.102303E+00 13 clat= -78.90 corp= 0.102827E+00 14 clat= -77.95 corp= 0.103360E+00 15 clat= -77.01 corp= 0.103939E+00 ……………………………………………. 1 clat= -90.00 corp= 0.928118E-03 2 clat= -89.28 corp= 0.938211E-03 3 clat= -88.34 corp= 0.948147E-03 4 clat= -87.40 corp= 0.958127E-03 5 clat= -86.45 corp= 0.968144E-03 6 clat= -85.51 corp= 0.978026E-03 7 clat= -84.56 corp= 0.987512E-03 8 clat= -83.62 corp= 0.996334E-03 9 clat= -82.68 corp= 0.100429E-02 10 clat= -81.73 corp= 0.101132E-02 11 clat= -80.79 corp= 0.101749E-02 12 clat= -79.84 corp= 0.102303E-02 13 clat= -78.90 corp= 0.102827E-02 14 clat= -77.95 corp= 0.103360E-02 15 clat= -77.01 corp= 0.103939E-02 ……………………………………………. 180 clat= 78.90 corp= 0.748597E-01 181 clat= 79.84 corp= 0.732037E-01 182 clat= 80.79 corp= 0.714148E-01 183 clat= 81.73 corp= 0.694914E-01 184 clat= 82.68 corp= 0.674369E-01 185 clat= 83.62 corp= 0.652621E-01 186 clat= 84.56 corp= 0.629869E-01 187 clat= 85.51 corp= 0.606411E-01 188 clat= 86.45 corp= 0.582635E-01 189 clat= 87.40 corp= 0.558989E-01 190 clat= 88.34 corp= 0.535936E-01 191 clat= 89.28 corp= 0.513893E-01 192 clat= 90.00 corp= 0.493168E-01 180 clat= 78.90 corp= 0.748597E-03 181 clat= 79.84 corp= 0.732037E-03 182 clat= 80.79 corp= 0.714148E-03 183 clat= 81.73 corp= 0.694914E-03 184 clat= 82.68 corp= 0.674369E-03 185 clat= 83.62 corp= 0.652621E-03 186 clat= 84.56 corp= 0.629869E-03 187 clat= 85.51 corp= 0.606411E-03 188 clat= 86.45 corp= 0.582635E-03 189 clat= 87.40 corp= 0.558989E-03 190 clat= 88.34 corp= 0.535936E-03 191 clat= 89.28 corp= 0.513893E-03 192 clat= 90.00 corp= 0.493168E-03
Regression coefficients for balanced Psfc at φ = -43.94 GSI_Global BE with unit of centibar CV3 BE with unit of (100 x centibar) k= 1 sigma_avn= 0.99597E+00 wgv= -0.24977E-09 k= 2 sigma_avn= 0.98736E+00 wgv= -0.24740E-09 k= 3 sigma_avn= 0.97744E+00 wgv= -0.24064E-09 k= 4 sigma_avn= 0.96611E+00 wgv= -0.22772E-09 k= 5 sigma_avn= 0.95315E+00 wgv= -0.20671E-09 k= 6 sigma_avn= 0.93843E+00 wgv= -0.17594E-09 k= 7 sigma_avn= 0.92175E+00 wgv= -0.13480E-09 k= 8 sigma_avn= 0.90298E+00 wgv= -0.84789E-10 k= 9 sigma_avn= 0.88194E+00 wgv= -0.30643E-10 k= 10 sigma_avn= 0.85851E+00 wgv= 0.19473E-10 k= 11 sigma_avn= 0.83259E+00 wgv= 0.55680E-10 k= 12 sigma_avn= 0.80414E+00 wgv= 0.70519E-10 k= 13 sigma_avn= 0.77315E+00 wgv= 0.63419E-10 k= 14 sigma_avn= 0.73972E+00 wgv= 0.41724E-10 k= 15 sigma_avn= 0.70400E+00 wgv= 0.16483E-10 ……………………………………………………………… lat= -43.94 k= 1 sigma_avn= 0.99597E+00 wgv= -0.24977E-07 lat= -43.94 k= 2 sigma_avn= 0.98736E+00 wgv= -0.24740E-07 lat= -43.94 k= 3 sigma_avn= 0.97744E+00 wgv= -0.24064E-07 lat= -43.94 k= 4 sigma_avn= 0.96611E+00 wgv= -0.22772E-07 lat= -43.94 k= 5 sigma_avn= 0.95315E+00 wgv= -0.20671E-07 lat= -43.94 k= 6 sigma_avn= 0.93843E+00 wgv= -0.17594E-07 lat= -43.94 k= 7 sigma_avn= 0.92175E+00 wgv= -0.13480E-07 lat= -43.94 k= 8 sigma_avn= 0.90298E+00 wgv= -0.84789E-08 lat= -43.94 k= 9 sigma_avn= 0.88194E+00 wgv= -0.30643E-08 lat= -43.94 k= 10 sigma_avn= 0.85851E+00 wgv= 0.19473E-08 lat= -43.94 k= 11 sigma_avn= 0.83259E+00 wgv= 0.55680E-08 lat= -43.94 k= 12 sigma_avn= 0.80414E+00 wgv= 0.70519E-08 lat= -43.94 k= 13 sigma_avn= 0.77315E+00 wgv= 0.63419E-08 lat= -43.94 k= 14 sigma_avn= 0.73972E+00 wgv= 0.41724E-08 lat= -43.94 k= 15 sigma_avn= 0.70400E+00 wgv= 0.16483E-08 …………………………………………………………………………….. k= 30 sigma_avn= 0.15210E+00 wgv= -0.47774E-11 k= 31 sigma_avn= 0.12961E+00 wgv= -0.13718E-10 k= 32 sigma_avn= 0.10946E+00 wgv= -0.20601E-10 k= 33 sigma_avn= 0.91512E-01 wgv= -0.21705E-10 k= 34 sigma_avn= 0.75612E-01 wgv= -0.15934E-10 k= 35 sigma_avn= 0.61597E-01 wgv= -0.62037E-11 k= 36 sigma_avn= 0.49290E-01 wgv= 0.18363E-11 k= 37 sigma_avn= 0.38517E-01 wgv= 0.33445E-11 k= 38 sigma_avn= 0.29117E-01 wgv= -0.20735E-11 k= 39 sigma_avn= 0.20938E-01 wgv= -0.93669E-11 k= 40 sigma_avn= 0.13831E-01 wgv= -0.11273E-10 k= 41 sigma_avn= 0.76470E-02 wgv= -0.49364E-11 k= 42 sigma_avn= 0.20420E-02 wgv= -0.52259E-12 lat= -43.94 k= 30 sigma_avn= 0.15210E+00 wgv= -0.47774E-09 lat= -43.94 k= 31 sigma_avn= 0.12961E+00 wgv= -0.13718E-08 lat= -43.94 k= 32 sigma_avn= 0.10946E+00 wgv= -0.20601E-08 lat= -43.94 k= 33 sigma_avn= 0.91512E-01 wgv= -0.21705E-08 lat= -43.94 k= 34 sigma_avn= 0.75612E-01 wgv= -0.15934E-08 lat= -43.94 k= 35 sigma_avn= 0.61597E-01 wgv= -0.62037E-09 lat= -43.94 k= 36 sigma_avn= 0.49290E-01 wgv= 0.18363E-09 lat= -43.94 k= 37 sigma_avn= 0.38517E-01 wgv= 0.33445E-09 lat= -43.94 k= 38 sigma_avn= 0.29117E-01 wgv= -0.20735E-09 lat= -43.94 k= 39 sigma_avn= 0.20938E-01 wgv= -0.93669E-09 lat= -43.94 k= 40 sigma_avn= 0.13831E-01 wgv= -0.11273E-08 lat= -43.94 k= 41 sigma_avn= 0.76470E-02 wgv= -0.49364E-09 lat= -43.94 k= 42 sigma_avn= 0.20420E-02 wgv= -0.52259E-10
Experiments with GSI_Global BE and CV3 BE • Case : 2009080312Z • Domain : CWB 45-km operational domain (222x128x45) • Experiments conducted: • GSI_BE_GLB : GSI_Global BE with Ps as the control variable • CV3_BE : CV3 BE with ln(Ps) as the control variable • CV3_BE_PS : CV3 BE with Ps as the control variable
Difference fields of the analysis increments between the experiments at level 1 for U, μ, θ, and q GSI_BE_GLB – CV3_BE GSI_BE_GLB – CV3_BE_PS μ μ U U θ q θ q
Differences in setup background error statistics between GSI and WRFDA • Vertical interpolation: σk redefined in GSI setup • Recursive filter parameters • The b and R are computed from RFDPAR1 based on the n – the order of filter. Based on the order n, the coefficients “cof” in RFDPAR1 was derived based on the equation (3.9) in Purser 2003, p. 1527: • RFDPAR1, RFDPAR2, and RFDPARV: • Input : be%ndeg(=4), be%nta(5600), and be%width(=10) • Output : be%be(1:ndeg), be%rate(1:ndeg), be%table(1:nta,1:ndeg) • Tuning factors in namelist file
The difference of vertical interpolation between CV3 and GSI In CV3: da_chgvres : directly using log(σk), conversion applied, σk = aeta1_llk. In GSI: gridmod.F90 : read in aeta1 aeta1_llk gess_grid : ges_psfcavg=1013.0 mb m__berror_stats_reg.f90/sub. berror_read_bal_reg : Note: the new σk is a little bit different from the inputted aeta1_llk. I don’t know why GSI need to do this kind of σk conversion (??). Then, the vertical interpolation is completed in log( σk ) coordinate.
Back ground error statistics tuning for GSI and CV3 BE GSI namelist for BE CV3 namelist for BE &wrfvar6 cv_options = 3 as1(3*max_ext_its) ; variance, horizonta and vertical scales for steam function for each outer-loop as2(3*max_ext_its) ; variance, horizonta and vertical scales for unbalanced velocity potential for each outer-loop as3(3*max_ext_its) ; variance, horizonta and vertical scales for unbalanced temperature for each outer-loop as4(3*max_ext_its) ; variance, horizonta and vertical scales for pseudo relative humidity for each outer-loop as5(3*max_ext_its) ; variance, horizonta and vertical scales for unbalanced surface pressure for each outer-loop
Vertical length scale tuning • Inverse of the vertical length-scales: vztdq for Ψ, χu, Tu, rh as3= 0.22,1.00,0.25 Single ob T=1, err =1 at k=12 CWB CV3 setting in WRFDA run as3= 0.22,1.00,1.5 as3=0.22,1.00,3 .6754 .2977 .2736
ΔT=-1.5, 15 km, err=0.208 Remarks The control variable correction: log(Ps) to Ps did not solve this “low level positive T increment” (side-robe) problem. Adjusting the vertical length-scale tuning factor (from 1.5 to 0.5, or something like that) may improve this situation. The factor for variance may also need to be adjusted because the normalized variance related to the vertical scale. -1.237 0.186 0.240
GSI namelist for BE An example setting in GSI run &BKGERR as=0.6,0.6,0.75,0.75,0.75,0.75,1.0,1.0 vs=0.7, hzscl=1.7,0.8,0.5, bw=0., fstat=.true.,
New “gen_be” for regional WRF GSI BE (beta version for testing) This “gen_be” must be compiled in mpp mode because the current Stage2_gsi code is modified based on the original NCEP code.
Stage0_gsi • Ingest the data from WRF forecast files • Complete the variable transformation • Generate the perturbed fields • Stage1_gsi • Remove the time mean of all the perturbations • Stage2_gsi • Compute the regression coefficients for balanced part for χ, T, and Ps with ψ • Compute the standard deviation, horizontal and vertical length-scales for recursive filter
(u, v) to (ψ, χ) transform: • Vorticity ζ and divergence D: To solve the Poisson equation • There are two method to solve the above problems: • FFT (POISSON_METHOD = 1 Cosine FFT and Sine FFT) • SOR (Succesive Over-Relaxation: POISSON_METHOD = 2); For a limited area, the splitting of the windfield is no longer unique. It is stated Miyakoda (1960) that in this case the distributions of y and c have no physical significance of themselves, but only insofar as they are used in (1) (Hellmholtz theorem). Thus, the streamfunction and velocity potential have physical significance only insofar as together they define a wind --- neither field is meaningful in itself. A partitioning into three components (harmonic, divergent, and rotational) allows us to minimize the rotational and divergent kinetic energy.
PsiChi_To_UV UV_To_Vorticity Solve_PoissonEqn (PsiChi_To_UV)
Introduced the Succesive Over-Relaxation (SOR) method to overcome this problem (Poisson-method=2) • Computing cost depending on the converging criteria • Harmonic component still missing. • Solution: directly using (U,V) as the control variables?
(θ, P, qv) to (T, rh) transform: var/da/gen_be/da_get_trh.inc • Ps is directly read from wrfout files. • Perturbation fields for ψ, Χ, T, Ps, and rh: • NMC method: different forecasts initialized at the different times but valid at the SAME TIME (BE_method = “NMC”). • Ensemble method: each of the ensemble forecasts subtracts the ensemble mean (BE_method = “ENS”).
Stage2_gsi • Regression coefficients • Velocity potential: χb level-wise regression equation • Temperature: Tb at level k related to ψ at all levels • Surface pressure: Psb related to ψ at all levels • The steps to obtain the regression coefficients: • To find the vertical length-scales sψ(k) of ψ • To get the basic (vertical error covariance) vectors and matrix
To get the coefficient vector C of decomposition • To compute the covariance matrix of C: • To compute the covariances for T and Ps: • Use Chelosky method to solve equations: • The regression coefficients aklfor T and wl for Ps are obtained by summing up the contribution corrsponding to each of basic vectors coefficients above. Note that currently akland wl are not latitude-dependent (?). • The regression coefficients for χ is directly computed as
Length-scales: • Horizontal scale: Wu et al. (2002): Appendix • Vertical scale: Daley (1993), Eq.(4.3.10) P110.
Shell script for running new “gen_be” wrapper_gen_be_gsi.ksh #[1] Define job by overriding default environment variables: export WRFVAR_DIR=/pub/home/guo/CODE/VAR/CWB/WRFDA_update export SCRIPTS_DIR=/pub/home/guo/CODE/VAR/WRFDA_scripts/var/scripts export GRAPHICS_DIR=/pub/home/guo/CODE/VAR/WRFDA_scripts/var/graphics/ncl export NUM_PROCS=8 export NUM_PROCS=1 export WALL_CLOCK=60 export PROJECT=64000510 export QUEUE=share #export QUEUE=regular export SUBMIT=none export CLEAN=false export NUM_WE=221 # 1 point less than stagger points export NUM_SN=127 # 1 point less than stagger points export NUM_LEVELS=44 # 1 point less than stagger points export LESS_Q_FROM_TOP=0 # Exclude levels from top for moisture statistics export LAT_BINS_IN_DEG=5.0 # Lat bins (in deg) for BE stats export DEBUG=0
export REGION=data export DAT_DIR=/pub/tmp/guo export REG_DIR=$DAT_DIR/$REGION export EXPT=test export RUN_DIR=$REG_DIR/$EXPT rm -rf $RUN_DIR export FC_DIR=$REG_DIR/cv3relo1/fc export FCST_RANGE1=24 export FCST_RANGE2=12 export FCST_INTERVAL=12 #export FCST_RANGE1=48 #export FCST_RANGE2=24 #export FCST_INTERVAL=24 export RUN_GEN_BE_GSI_STAGE0=true export RUN_GEN_BE_GSI_STAGE1=true export RUN_GEN_BE_GSI_STAGE2=true export START_DATE=2009080412 # first initial time + FCST_RANGE1 export END_DATE=2009080800 # the last initial time + FCST_RANGE2 #export START_DATE=2009080512 # first initial time + FCST_RANGE1 #export END_DATE=2009080812 # the last initial time + FCST_RANGE2 export INTERVAL=$FCST_INTERVAL ${SCRIPTS_DIR}/gen_be/gen_be_gsi.ksh
wrapper_gen_be_gsi_plot.ksh export NCARG_ROOT=/pub/ops/tools/ncl #[1] Define job by overriding default environment variables: export SCRIPTS_DIR=/pub/home/guo/CODE/VAR/WRFDA_scripts/var/scripts export GRAPHICS_DIR=/pub/home/guo/CODE/VAR/WRFDA_scripts/var/graphics/ncl export GRAPHIC_WORKS=pdf export RESOLUTION=45.0 # Resolution in km export NUM_WE=221 # 1 point less than stagger points export NUM_SN=127 # 1 point less than stagger points export NUM_LEVELS=44 # 1 point less than stagger points export PLOT_CORRELATION=true # Possible if you have access to RUN_DIR export BY_LEVELS=False # If "True" plots diagnostics by sigma levels export REGION=data export EXPT=test export DAT_DIR=/pub/tmp/guo export REG_DIR=$DAT_DIR/$REGION export PLOT_DIR=$REG_DIR/$EXPT export BE_DIR=$REG_DIR/$EXPT export BE_FILE_NAME=wrf-arw-gsi_be.gcv
# #-------------------------------------------------------------------------------------------------- # Plot regression coefficients, variance, Horizontal & Vertical scale-lengths #-------------------------------------------------------------------------------------------------- ncl ${GRAPHICS_DIR}/gen_be/plot_gsi_be.ncl # #------------------------------------------------------------------------------------------------------- # Plot Statistic Correlation (balanced parts)): <ps_b.ps>, <t_b.t> & <chi_b.chi> #------------------------------------------------------------------------------------------------------- # if $PLOT_CORRELATION ; then ncl ${GRAPHICS_DIR}/gen_be/gsi_correlation.ncl fi
1.2 Improve the performance of WRFVar 1.2.3 Evaluation of CV3 “gen_be” code • Completed a testing run with “gen_be” code to generate file “wrf-arw-gsi_be.gcv” • Developed the running scripts: wrapper_gen_be_gsi.ksh wrapper_gen_be_gsi_plot.ksh • Conducted testing run with global and regional GSI BE with WRFDA. Plan for GSI BE development in WRFDA • cv_options = 3 # existed option • cv_options = 31 # ingest the GSI global BE or regional # WRF_ARW_GSI_BE • cv_options = 7 # ingest the GSI BE, and using GSI namelist setting for # tuning and utilization ANY SUGGESTIONS?
END THANK YOU