1 / 25

EXAMPLE 1

ANSWER. Notice that m = –4 and n = –5 . So , x 2 – 9 x + 20 = ( x – 4)( x – 5). EXAMPLE 1. Factor trinomials of the form x 2 + bx + c. Factor the expression. a. x 2 – 9 x + 20. b. x 2 + 3 x – 12. SOLUTION.

malina
Download Presentation

EXAMPLE 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANSWER Notice thatm = –4andn = –5. So, x2 – 9x + 20 = (x – 4)(x – 5). EXAMPLE 1 Factor trinomials of the form x2+ bx + c Factor the expression. a. x2 – 9x + 20 b. x2 + 3x – 12 SOLUTION a.You wantx2 – 9x + 20 = (x + m)(x + n)where mn = 20andm + n = –9.

  2. ANSWER Notice that there are no factors mand nsuch that m + n = 3. So, x2 + 3x – 12 cannot be factored. EXAMPLE 1 Factor trinomials of the form x2+ bx + c b.You wantx2 + 3x – 12 = (x + m)(x + n)where mn = – 12andm + n = 3.

  3. for Example 1 GUIDED PRACTICE Factor the expression. If the expression cannot be factored, say so. 1. x2 – 3x – 18 2. n2 – 3n + 9 3. r2 + 2r – 63 ANSWER ANSWER ANSWER cannot be factored (x – 6)(x + 3) (r + 9)(r –7)

  4. EXAMPLE 2 Factor with special patterns Factor the expression. a. x2 – 49 = x2 – 72 Difference of two squares = (x + 7)(x – 7)

  5. for Example 2 GUIDED PRACTICE Factor the expression. 4. x2 – 9 ANSWER (x – 3)(x + 3) 5. q2 – 100 ANSWER (q – 10)(q + 10) 6. y2 + 16y + 64 ANSWER (y + 8)2

  6. for Example 2 GUIDED PRACTICE 7. w2 – 18w + 81 (w – 9)2

  7. x – 9 = 0 or x + 4 = 0 x = 9 or x = –4 ANSWER The correct answer is C. EXAMPLE 3 Standardized Test Practice SOLUTION x2 – 5x – 36 = 0 Write original equation. (x – 9)(x + 4) = 0 Factor. Zero product property Solve for x.

  8. for Examples 3 and 4 GUIDED PRACTICE 8. Solve the equationx2 – x – 42 = 0. ANSWER –6 or 7

  9. EXAMPLE 5 Find the zeros of quadratic functions. Find the zeros of the function by rewriting the function in intercept form. a. y = x2 – x – 12 b. y = x2 + 12x + 36 SOLUTION a. y = x2 – x – 12 Write original function. = (x + 3)(x – 4) Factor. The zeros of the function are –3 and 4. CheckGraph y = x2 – x – 12. The graph passes through (–3, 0) and (4, 0).

  10. EXAMPLE 5 Find the zeros of quadratic functions. b. y = x2 + 12x + 36 Write original function. = (x + 6)(x + 6) Factor. The zeros of the function is –6 CheckGraph y = x2 + 12x + 36. The graph passes through ( –6, 0).

  11. for Example for Example 5 GUIDED PRACTICE GUIDED PRACTICE Find the zeros of the function by rewriting the function in intercept form. 10. y = x2 + 5x – 14 ANSWER –7 and 2 11. y = x2 – 7x – 30 ANSWER –3 and 10

  12. EXAMPLE 1 Factor ax2 + bx + c where c > 0 Factor 5x2 – 17x + 6. SOLUTION You want 5x2 – 17x + 6 = (kx + m)(lx + n) where kand lare factors of 5 andmand nare factors of 6. You can assume that kand lare positive and k ≥ l. Because mn> 0, mand nhave the same sign. So, mand nmust both be negative because the coefficient of x, –17, is negative.

  13. ANSWER The correct factorization is5x2 –17x + 6 = (5x – 2)(x – 3). EXAMPLE 1 Factor ax2 + bx + c where c > 0

  14. ANSWER The correct factorization is3x2 + 20x – 7= (3x – 1)(x + 7). EXAMPLE 2 Factor ax2 + bx + c where c < 0 Factor 3x2 + 20x – 7. SOLUTION You want3x2 + 20x – 7 = (kx + m)(lx + n)wherekandlarefactors of3andmandnare factors of–7. Becausemn < 0, mandn have opposite signs.

  15. for Examples 1 and 2 GUIDED PRACTICE GUIDED PRACTICE Factor the expression. If the expression cannot be factored, say so. 1. 7x2 – 20x – 3 ANSWER (7x + 1)(x – 3) 2. 2w2 + w + 3 ANSWER cannot be factored

  16. for Examples 1 and 2 GUIDED PRACTICE GUIDED PRACTICE 3. 4u2 + 12u + 5 ANSWER (2u + 1)(2u + 5)

  17. EXAMPLE 3 Factor with special patterns Factor the expression. a. 9x2 – 64 = (3x)2 – 82 Difference of two squares = (3x + 8)(3x – 8)

  18. for Example 3 GUIDED PRACTICE GUIDED PRACTICE Factor the expression. 7. 16x2 – 1 (4x + 1)(4x – 1) ANSWER 8. 9y2 + 12y + 4 (3y + 2)2 ANSWER

  19. EXAMPLE 4 Factor out monomials first Factor the expression. = 5(x2 – 9) a. 5x2 – 45 = 5(x + 3)(x – 3) b. 6q2 – 14q + 8 = 2(3q2 – 7q + 4) = 2(3q – 4)(q – 1) c. –5z2 + 20z = –5z(z – 4) d. 12p2 – 21p + 3 = 3(4p2 – 7p + 1)

  20. for Example 4 GUIDED PRACTICE GUIDED PRACTICE Factor the expression. 13. 3s2 – 24 ANSWER 3(s2 – 8) 14. 8t2 + 38t – 10 ANSWER 2(4t – 1) (t + 5) 15. 6x2 + 24x + 15 ANSWER 3(2x2 + 8x + 5) 16. 12x2 – 28x – 24 ANSWER 4(3x + 2)(x – 3) 17. –16n2 + 12n ANSWER –4n(4n – 3)

  21. orx + 4 = 0 3x – 2 = 0 x = orx = –4 23 EXAMPLE 5 Solve quadratic equations Solve(a) 3x2 + 10x – 8 = 0 and(b) 5p2 – 16p + 15 = 4p – 5. a. 3x2 + 10x – 8 = 0 Write original equation. (3x – 2)(x + 4) = 0 Factor. Zero product property Solve for x.

  22. EXAMPLE 5 Solve quadratic equations b. 5p2 – 16p + 15 = 4p – 5. Write original equation. 5p2 – 20p + 20 = 0 Write in standard form. p2 – 4p + 4 = 0 Divide each side by 5. (p – 2)2 = 0 Factor. p – 2 = 0 Zero product property p = 2 Solve for p.

  23. 3 or –3 12 GUIDED PRACTICE GUIDED PRACTICE for Examples 5, 6 and 7 Solve the equation. 19. 6x2 – 3x – 63 = 0 ANSWER 20. 12x2 + 7x + 2 = x +8 no solution ANSWER 21. 7x2 + 70x + 175 = 0 ANSWER –5

More Related