1 / 71

Projektseminar Computational Social Choice -Eine Einführung-

Delve into Social Choice Theory concepts like voting systems, manipulation, and NP-hardness in computer science. Explore various voting methods and complexity shields to safeguard elections against manipulation.

mamanda
Download Presentation

Projektseminar Computational Social Choice -Eine Einführung-

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ProjektseminarComputationalSocial Choice -Eine Einführung- Jörg Rothe & Lena Schend SS 2012, HHU Düsseldorf 4. April 2012

  2. Introduction Social Choice Theory • votingtheory • preferenceaggregation • judgmentaggregation Computer Science • artificialintelligence • algorithm design • computationalcomplexitytheory - worst-case/average-casecomplexity - optimization, etc. • voting in multiagentsystems • multi-criteriadecisionmaking • metasearch, etc. ... Software agentscansystematicallyanalyzeelectionsto find optimal strategies

  3. Introduction Social Choice Theory • votingtheory • preferenceaggregation • judgmentaggregation ComputationalSocialChoice Computer Science • artificialintelligence • algorithm design • computationalcomplexitytheory - worst-case/average-casecomplexity - optimization, etc. • computationalbarrierstoprevent • manipulation • control • bribery Software agentscansystematicallyanalyzeelectionsto find optimal strategies

  4. Computational Social Choice Withthe power of NP-hardnessvulcanshaveconstructedcomplexityshieldstoprotectelectionsagainstmanytypesofmanipulationandcontrol.

  5. Computational Social Choice Withthe power of NP-hardnessvulcanshaveconstructedcomplexityshieldstoprotectelectionsagainstmanytypesofmanipulationandcontrol. • Question: • Are worst-casecomplexityshieldsenough? • Or do theyevaporate on "typicalelections"?

  6. NP-HardnessShields Evaporating? approximation NP-hardness shields juntadistributions experimental analysis single-peakedelectorates

  7. Elections • An electionis a pair (C,V) with • a finite setCofcandidates: • a finite listVofvoters. • VotersarerepresentedbytheirpreferencesoverC: • eitherbylinear orders: > > > • orbyapprovalvectors: (1,1,0,1) • Votingsystem: determineswinnersfromthepreferences

  8. Voting Systems ApprovalVoting (AV) • votesareapprovalvectors in

  9. Voting Systems ApprovalVoting (AV) • votesareapprovalvectors in • winners: all candidateswiththemostapprovals

  10. Voting Systems ApprovalVoting (AV) • votesareapprovalvectors in • winners: all candidateswiththemostapprovals winners:

  11. Voting Systems PositionalScoring Rules (formcandidates) • definedbyscoringvectorwith • eachvotergivespointstothecandidate on positioni • winners: all candidateswithmaximum score Borda: PluralityVoting (PV): k-Approval (m-k-Veto): Veto (Anti-Plurality):

  12. Voting Systems PairwiseComparison v1: > > > v3: > > > v2: > > > v4: > > > Condorcet: beats all othercandidatesstrictly Copeland : 1pointforvictorypointsfortie Maximin: maximumofthe worstpairwisecomparison

  13. Voting Systems Round-based: Single Transferable Vote (STV) v1: > > > v2: > > > v3: > > > v4: > > >

  14. Voting Systems Round-based: Single Transferable Vote (STV) v1: > > v2: > > v3: > > v4: > >

  15. Voting Systems Round-based: Single Transferable Vote (STV) v1: v2: v3: v4:

  16. Voting Systems Level-based: BucklinVoting (BV) v1: > > > v2: > > > v3: > > > v4: > > > v5: > > > • 5 voters => strictmajoritythresholdis 3

  17. Voting Systems Level-based: BucklinVoting (BV) v1: > > > v2: > > > v3: > > > v4: > > > v5: > > > • 5 voters => strictmajoritythresholdis 3

  18. Voting Systems Level-based: BucklinVoting (BV) v1: > > > v2: > > > v3: > > > v4: > > > Level 2 Bucklin v5: > > > winners: • 5 voters => strictmajoritythresholdis 3

  19. Voting Systems Level-based: FallbackVoting (FV) • combines AV and BV Candidates: v: { , } | { , } v: > | { , } • Bucklinwinnersarefallbackwinners. • IfnoBucklinwinnerexists (due todisapprovals), thenapprovalwinnerswin.

  20. War on ElectoralControl AV winners: "chair": knows all preferences

  21. War on ElectoralControl AV winner: "chair": knows all preferences andcanchangethestructure of an election

  22. War on ElectoralControl AV winner: "chair": knows all preferences andcanchangethestructure Other typesofcontrol: of an election • adding/partitioningvoters • deleting/adding/partitioningcandidates

  23. NP-HardnessShields forControl Resistance = NP-hardness,Vulnerability = P, Immunity, andSusceptibility

  24. War on Manipulation I like Spock but I don‘twanthimtobethecaptain!! Copeland : winner v1: > > > v3: > > > v2: > > > v4: > > >

  25. War on Manipulation I like Spock but I don‘twanthimtobethecaptain!! Copeland : winner v1: > > > v3: > > > v2: > > > v4: > > > assumption: .v4knowstheother voters‘ votes v4 lies tomakehis mostpreferred candidatewin

  26. War on Manipulation I like Spock but I don‘twanthimtobethecaptain!! Copeland : winners v1: > > > v3: > > > v2: > > > v4: > > > Here: unweightedvoters, singlemanipulator . Other types: - coalitionalmanipulation - weightedvoters

  27. NP-Hardness Shields for Manipulation Results due toConitzer, Sandholm, Lang (J.ACM 2007)

  28. NP-HardnessShields Evaporating? approximation NP-hardness shields juntadistributions experimental analysis single-peakedelectorates

  29. Junta Distributions ofProcacciaand Rosenschein (JAAMAS 2007) areomittedhere, astheyare a rathertechnicalconcept.

  30. NP-HardnessShields Evaporating? approximation NP-hardness shields juntadistributions experimental analysis single-peakedelectorates

  31. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  32. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  33. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  34. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  35. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  36. Experiments Manipulation • testing (heuristic) algorithmsformanipulationproblemathand on givenelections • sample real elections • generaterandomelections: Impartial Culture (IC) Polya-Eggenberger (PE) • votersvoteindependently • all preferencesareequallylikely • votersarehighlycorrelated • v1 v2 v3 ... Walsh (IJCAI 2009; ECAI 2010)

  37. Experiments Manipulation • Resultsfor STV • Single Manipulation: • forupto 128 candidates/votersmanipulationhaslowcomputationalcosts (for all voterdistributions) • chanceofsuccessfulmanipulationdecreaseswithincreasingnumberofnonmanipulativevoters • Coalitional Manipulation: • larger coalitionsaremorelikelytobesuccessful • again: computationalcostsarelowforupto 128 candidates/voters • Resultsfor Veto (weighted) • ifmanipulators‘ weightsaretoobig/small => trivial • even in criticalregion: computationalcostsarelow • onlycorrelatedvotersincreasecomputationalcosts Walsh (IJCAI 2009; ECAI 2010)

  38. NP-HardnessShields Evaporating? approximation NP-hardness shields juntadistributions experimental analysis single-peakedelectorates

  39. Approximating Manipulation Before: Is manipulationpossible? ?

  40. Approximating Manipulation Before: Is manipulationpossible? Now: Howmanymanipulatorsareneeded? (min!) Approximation Algorithms: • efficientalgorithms • do not always find optimal solution • canbeanalyzedboththeoreticallyandexperimentally ? ?

  41. ApproximatingBorda 3x > > > > > > 2x > > > > > > Bordawinner manipulatorsprefer

  42. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  43. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  44. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  45. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  46. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > m3 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  47. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > m3 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  48. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > m3 > > > > > > m4 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  49. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > m3 > > > > > > m4 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

  50. ApproximatingBorda AlgorithmforBorda-CCUM : "Reverse" m1 > > > > > > m2 > > > > > > m3 > > > > > > m4 > > > > > > m5 > > > > > > Zuckerman, Procaccia & Rosenschein (ArtificialIntelligence 2009)

More Related