600 likes | 1.2k Views
LAPLACE TRANSFORM. Prepared by Ertuğrul Eriş Reference textbook: Nilsson/Riedel. Updated: November 2011. LAPLACE TRANSFORM. WHY TRANSFORM PRO ORDINARY DIFFERENTIAL EQUATIONS/ ALGEBRIAC LINEAR EQUATIONS CON t-domain → s-domain→ t-domain OTHER KNOWN TRANSFORMS LOGARITMA FREQUENCY DOMANN.
E N D
LAPLACE TRANSFORM Prepared by Ertuğrul Eriş Reference textbook: Nilsson/Riedel Updated: November 2011 Ertuğrul Eriş
LAPLACE TRANSFORM • WHY TRANSFORM • PRO • ORDINARY DIFFERENTIAL EQUATIONS/ ALGEBRIAC LINEAR EQUATIONS • CON • t-domain→s-domain→ t-domain • OTHER KNOWN TRANSFORMS • LOGARITMA • FREQUENCY DOMANN Ertuğrul Eriş
BASIC SIGNALS/FUNCTIONS IN ELECTRONIC SYSTEMS • Electrical signals: Analog, digital • Speech, image/video, light, x-ray, ultrasonography, • DA/AD converters • Fourier Transform • Sinusoidal signals • Sources • DC source + switch (unit function), discontinuous at the origin • Derivative • Dirac Delta function (Impulse) • integral • 0 • AC • Signals in linear circuits • DC voltage/current • AC voltage/current (Under damped, Sönümlü) • Exponential voltage/current Ertuğrul Eriş
LAPLACE TRANSFORM DEFINITION-1 • Expectation • Differential equation becomes algebriac • definitions relations, KVL, KCL equations becomes algebriac • L {f(t)}= • F(s)=L {f(t)} • f(t)= L -1 {F(s)} Ertuğrul Eriş
LAPLACE TRANSFORM DEFINITION-2 L {f(t)}= • Integration limits • Upper limit ∞ • Some functions laplace transform may not exsist • Lower limit (0), One-sided/unileteral • Physical reality • Lower limit at t=0 continuous/ discontinuous • t = 0- lower limit • t<0- accounted for initial conditions • From t = 0- to t=0+ integration: (0) • Exception: Dirac delta function • Functional/Operational transforms
CONTINUOUS/DISCONTINUOUS AT ZERO t = 0- f(t)=1 lower limit t<0- , accounted for initial Conditions From t = 0- to t=0+ integral: (0) t = 0- f(t)=0 lower limit t<0- , accounted for initial Conditions From t = 0- to t=0+ integral: (0) Ertuğrul Eriş
STEP (BASAMAK) FONCTION K=1 Birim basamak fonksiyonu Unit step function Unit step function (mathematical model): DC source + Switch Ertuğrul Eriş
DISCONTINUITY(JUMP) OF STEP FUNCTION AT ZERO Theory*practise Ertuğrul Eriş
STEP OCCURANCE SHIFT Could we express a «Pulse functıon» by using step functıons? Ertuğrul Eriş
PIECEWISE LINEAR (KESİKLİ LİNEER) FUNCTIONS/STEP FUNCTIONS Ertuğrul Eriş
DERIVATIVE AT DISCONTINUITY: A VARIABLE PARAMETER FUNCTION USED TO GENERATE IMPULSE (DIRAC DELTA) FONCTION Variable parameter function: As parameter approaches to zero; Amplitude approaches to infinity, The duration of the function approaches to zero, Area under the function is constant. Ertuğrul Eriş
DERIVATIVE AT DISCONTINUITY: A VARIABLE PARAMETER FUNCTION USED TO GENERATE IMPULSE (DIRAC DELTA) FONCTION Variable parameter function: As parameter approaches to zero; Amplitude approaches to infinity, The duration of the function approaches to zero, Area under the function is constant. K:strenght Ertuğrul Eriş
DIRAC DELTA (IMPULSE) FUNCTION δ(t) AND SIFTING (AYIRMA) PROPERTY Ertuğrul Eriş
LAPLACE OF δ(t) L {f(t)}= Sifting property: L {δ(t)}= L {δ(t)}= 1 Ertuğrul Eriş
LAPLACE OF THE DERIVATIVE OF δ’(t) L {δ’(t)}= s Genelleştirilmişi: L {δ(n)(t)}= sn L {f(t)}= Details is in Nilsson Ertuğrul Eriş
UNIT STEP FUNCTION/DIRAC DELTA δ(t) FONCTION f(t)→u(t) ε →0 f’(t) →δ(t) ε →0 δ(t)= du(t)/d(t) Ertuğrul Eriş
LAPLACE OF UNIT STEP FUNCTION L {f(t)}= L {u(t)}= 1/s F(s) Rational function! Ertuğrul Eriş
LAPLACE OF e-at L {f(t)}= L {e - at}= 1/(s+a) F(s) Rational function! ! Ertuğrul Eriş
LAPLACE OF SINUS L {f(t)}= L {sin ωt }= ω/(s2+ω2) L {cosωt }= s/(s2+ω2) F(s) Rational function! How to find Laplace of Cos(ωt+φ)? Ertuğrul Eriş
LAPLACE OF RAMP FONCTION L {f(t)}= F(s) rational function! Ertuğrul Eriş
LIST OF LAPLACE TRANSFORMS L {f(t)}= İmpuse δ(t) 1 Step u(t) 1/s Ramp t 1/(s2) Exponential e-at 1/(s+a) Sine sinωt ω/(s2+ω2) Cosine cosωt s/(s2+ω2) Damped Ramp te-at 1/(s+a)2 Damped sine e-at sinωt ω/((s+a)2+ω2) Damped cosine e-at cosωt (s+a)/((s+a)2+ω2) All of the F(s) functions are Rational function! Ertuğrul Eriş
OPERATIONAL TRANSFORMS Kf(t) KF(s) f1(t)+f2(t)-f3(t) F1(s)+F2(s)-F3(s) df(t)/dt sF(s)-f(0-) d2f(t)/dt2 s2F(s)-sf(0-)-df(0-)/dt dnf(t)/dtn snF(s)- sn-1f(0-)-sn-2 df(0-)/dt -dfn-1(0-)/dtn-1 F(s)/s f(t-a)u(t-a), a>0 e-asF(s) e-atf(t) F(s+a) f(at), a>0 (1/a)F(s/a) tf(t) -dF(s)/ds tnf(t) (-1)n dnF(s)/dsn f(t)/t L {f(t)}= Note: Laplace transforms Differential equations to rational fonctions. Ertuğrul Eriş
APPLYING THE LAPLACE TRANSFORM Ertuğrul Eriş
INVERSE LAPLACE TRANSFORM-1 • Solutions in s-domain are rational fonctions • Proper rational n<m • Improper rational m<n • Partial fraction expansion (basit kesirler ) • Inverse Laplace Ertuğrul Eriş
INVERSE LAPLACE TRANSFORM-2 u(t) 1/s e-at1/(s+a) sinωt ω/(s2+ω2) cosωt s/(s2+ω2) te-at1/(s+a)2 e-at sinωt ω/((s+a)2+ω2) e-atcosωt (s+a)/((s+a)2+ω2) • Poles of the rational function • real→exponential • Complex → damped sinusoidal • Imaginer →sinusoidal Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, REAL ROOTS If this function were arelated to a circuit solution , does this circuit burn? Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, REPEATED REAL ROOTS-1 If this function were related to a circuit solution , would this circuit burn? Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, REAL ROOTS-2 If this function were related to a circuit solution , would this circuit burn? Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, COMPLEX ROOTS-1 Complex conjugate roots MultipleComplex conjugate roots Note: In order to find the inverse laplace only «K» calculation required, no need to calculate K* What happens if the roots are imaginer (multiple case as well!)? Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, COMPLEX ROOTS-2 If this function were related to a circuit solution , would this circuit burn? Ertuğrul Eriş
INVERSE LAPLACE EXAMPLE, REPEATED COMPLEX ROOTS-3 If this function were related to a circuit solution , would this circuit burn? Ertuğrul Eriş
IMPROPER RATIONAL FUNCTION • Numerator degree> denominator degree • After the division • Polynomial function+proper rational function • Inverse Laplace will have Dirac delta and its derivatives Ertuğrul Eriş
IMPROPER RATIONAL FUNCTION EXAMPLE Ertuğrul Eriş
POLES/ZEROS IN S-DOMAIN (KUTUP VE SIFIRLAR ) Ertuğrul Eriş
INITIAL AND FINAL VALUE TEOREMS Ertuğrul Eriş
EXAMPLE-1 Ertuğrul Eriş
EXAMPLE-2 Ertuğrul Eriş
EXAMPLE-3 Ertuğrul Eriş
EXAMPLE-4 Ertuğrul Eriş
EXAMPLE-5 Ertuğrul Eriş
EXAMPLE-6 Ertuğrul Eriş
EXAMPLE-7 Ertuğrul Eriş
EXAMPLE-8 Ertuğrul Eriş
EXAMPLE-9 Ertuğrul Eriş
EXAMPLE-10 Ertuğrul Eriş
PROGRAM DESIGN DEPT, PROGRAM G R A D U A T E S T U D E N T STUDENT P R OG R A M O U T C O M E S PROGRAM OUTCOMES P R OG R A M O U T C O M E S STATE, ENTREPRENEUR FIELD QALIFICATIONS EU/NATIONAL QUALIFICATIONS KNOWLEDGE SKILLS COMPETENCES NEWCOMERSTUDENT ORIENTIATION GOVERNANCE Std. questionnaire ALUMNI, PARENTS ORIENTIATION STUDENT PROFILE Std. questionnaire FACULTY NGO STUDENT, ??? CIRCICULUM ??? INTRERNAL CONSTITUENT Std. questionnaire EXTRERNAL CONSTITUENT EXTRERNAL CONSTITUENT REQUIREMENTS EU/NATIONAL FIELD QUALIFICATIONS PROGRAM OUTCOMES QUESTIONNAIRES QUALITY IMP. TOOLS GOAL: NATIONAL/INTERNATIONAL ACCREDITION
BLOOM’S TAXONOMYANDERSON AND KRATHWOHL (2001) !!Listening !! Doesn’t exits in the original!!! http://www.learningandteaching.info/learning/bloomtax.htm Ertuğrul Eriş
ULUSAL LİSANS YETERLİLİKLER ÇERÇEVESİ BLOOMS TAXONOMY Ertuğrul Eriş
COURSE ASSESMENT MATRIX LEARNING OUTCOMES Devre Analizi İlk Ders
‘ABET’ ENGINEERING OUTCOMES Ertuğrul Eriş