600 likes | 771 Views
Simulating Spatial Partial Differential Equations with Cellular Automata. By Brian Strader Adviser: Dr. Keith Schubert Committee : Dr. George Georgiou Dr. Ernesto Gomez. Introduction & Background. Partial Differential Equation, Cellular Automata (CA), & Biology
E N D
Simulating Spatial Partial Differential Equations with Cellular Automata By Brian Strader Adviser: Dr. Keith Schubert Committee: Dr. George Georgiou Dr. Ernesto Gomez
Introduction & Background • Partial Differential Equation, Cellular Automata (CA), & Biology • Converting Differential Equations to CA • CA Theoretical Constraints • Convergence Maps & Guidelines Topics Covered
Introduction & Background • CA Model uses simple rules about changes with time. • Rules are localized and involve the values of cell neighbors. • The set of rules are applied to the cells with the matrix after each time period. Cellular Automata (CA)
Introduction & Background Survival Rule: 2-3 Neighbors Conway’s Game of Life Death by Overpopulation: 4+ Neighbors
Introduction & Background Death by Isolation: 1 or Less Neighbors Conway’s Game of Life Birth: 3 Neighbors
Introduction & Background t = 0 Conway’s Game of Life
Introduction & Background t = 1 Conway’s Game of Life
Introduction & Background t = 2 Conway’s Game of Life
Introduction & Background t = 3 Conway’s Game of Life
Introduction & Background Celluar Automata Simulation
Introduction & Background Celluar Automata Simulation
Introduction & Background • Changes with respect to time. • Part of the equation depends on changes in space. Spatial Partial Diff. Equations
Introduction & Background Vegetation Patterns
Introduction & Background • Simple Rules - easy to understand • Discretized • Local Problem View • Highly Parallelizable CA Advantages
Converting Differential Equations to CA Conditions: for n(u) = up where p <= 1 for o(u) = up where p <= 1 Diff. Equation Form
Converting Differential Equations to CA Conditions: for n(u) = up where p <= 1 for o(u) = up where p <= 1 Diff. Equation Form
Converting Differential Equations to CA Conditions: for n(u) = up where p <= 1 for o(u) = up where p <= 1 Diff. Equation Form
Converting Differential Equations to CA Discretization Techniques
Converting Differential Equations to CA Large hx Size of hx Small hx
Converting Differential Equations to CA Forward Euler’s Method: Euler’s Methods
Converting Differential Equations to CA Size of ht
Converting Differential Equations to CA Backward Euler’s Method: Euler’s Methods
Converting Differential Equations to CA Forward Euler’s Method: Euler’s Methods Backward Euler’s Method:
Converting Differential Equations to CA Forward Euler’s Method: Euler’s Methods 1 2 3 4 5 i=1 j j-1 j+1 3.2 5.7 7.3 9.2 -7.5 i=2 j j-1 j+1
CA Theoretical Constraints General Linear Form
CA Theoretical Constraints Convergence and Divergence
CA Theoretical Constraints • Time Domain Frequency Domain • Discrete Form of Laplace Transform and related to the Fourier Transform • Transformation makes life easier • zeros when f(z)=0 poles when g(z)=0 Z-Transform
CA Theoretical Constraints Z-Transform
CA Theoretical Constraints 1. Perform z-transform 2. Solve for Uj 3. Find poles and zeros for Uj=f(z)/g(z) 4. Set poles and zeros values of z < 1 to converge Z-Transform
CA Theoretical Constraints Forward Euler’s Linear Form: Forward Euler’s Constraints Zeros Constraint:
CA Theoretical Constraints Forward Euler’s Linear Form: Forward Euler’s Constraints Poles Constraint:
CA Theoretical Constraints Backward Euler’s Linear Form: Backward Euler’s Constraints Zeros Constraint:
CA Theoretical Constraints Backward Euler’s Linear Form: Backward Euler’s Constraints Poles Constraint:
Convergence Maps & Guidelines 1 2 3 4 5 i=1 j j-1 j+1 1.1 1.9 2.8 2.6 5.4 i=2 ... j j-1 j+1 CA Sim 0.11 0.34 0.27 0.4 0.56 i=n-1 < 10-10 j j-1 j+1 0.1 0.35 0.27 0.4 0.57 i=n j j-1 j+1
Convergence Maps & Guidelines 1 2 3 4 5 i=1 j j-1 j+1 1.1 1.9 2.8 2.6 5.4 i=2 ... j j-1 j+1 CA Sim 1.2 872 927 -722 -256 i=n-1 > 1010 j j-1 j+1 541 -5623 -897 456 878 i=n j j-1 j+1
Convergence Maps & Guidelines 1 2 3 4 5 i=1 j j-1 j+1 1.1 1.9 2.8 2.6 5.4 i=2 ... j j-1 j+1 CA Sim 1 2.1 3.1 3.9 5 i=3999 j j-1 j+1 1.1 2.1 3 4 5.1 i=4000 j j-1 j+1
Convergence Maps & Guidelines Forward Convergence Map
Convergence Maps & Guidelines Backward Convergence Map
Convergence Maps & Guidelines a Parameters
Convergence Maps & Guidelines a1 a Parameters
Convergence Maps & Guidelines a2 a Parameters
Convergence Maps & Guidelines Poles Constraint: Forward Constraints
Convergence Maps & Guidelines Backward Constraints
Convergence Maps & Guidelines Simulation Speed
Convergence Maps & Guidelines a3 Vertical Constraint
Convergence Maps & Guidelines Zeros Constraint: a3 Vertical Constraint
Convergence Maps & Guidelines Substituting Uj-1 and Uj+1 • Boundary Zero Values 0 0.11 0.34 0.27 0.4 0.56 0 j j-1 j+1
Convergence Maps & Guidelines Zeros Boundary Constraint
Convergence Maps & Guidelines Zeros Boundary Constraint
Convergence Maps & Guidelines If ((upperZero and lowerPole intersects) and (intesection < initial point)) then htMax = intersection * safetyBuffer; Else htMax = initial point * safetyBuffer; End ht = userInput( < htMax); hx=lowerPole(ht); Guidelines