360 likes | 455 Views
Motion and Forces. Chapter 2. Bell Work 1/26/11. Copy each of these statements onto your bell work sheet. Then decide if they are true or false. If false correct them. Speed includes direction, while velocity does not.
E N D
Motion and Forces Chapter 2
Bell Work 1/26/11 Copy each of these statements onto your bell work sheet. Then decide if they are true or false. If false correct them. • Speed includes direction, while velocity does not. • A moving object covers the same distance in less time if its velocity is greater. • Acceleration measures only change in speed.
Bell Work 1/22/10 Please begin working on your foldable or PowerPoint On your bell work sheet write down “working on project” for today
Bell Work 1/27/11 Please answer #1-13 in the MAP practice packet by the sinks. Write your answers for each question on your bell work sheet for today. PLEASE DO NOT WRITE IN THE PACKET
Force 2.1 Notes • forces occur when one object pushes or pulls on another object • We say that one object exerts a force on another object to cause it to accelerate.
Describing Forces • forces are describe according to: • strength and • direction
Two types of Forces • Unbalanced Force • two forces acting in the same direction • OR • One stronger force acting in the opposite direction of a weaker force. *Unbalanced forces cause an object to accelerate!
Balanced Force • equal forces acting in opposite directions * balanced forces will NOT change the object’s motion!
Newton’s First Law • An object at rest will remain at rest unless acted upon by an unbalanced force!
continued • An object moving at constant velocity will continue moving at constant velocity unless acted upon by an unbalanced force.
Inertia Lab Questions • Before you start this experiment, see if you can decide which egg is the raw one and which egg is the hard boiled one. Place the eggs on the two plates and start them spinning at the same time. The egg that continues spinning for the longest time is the hard boiled egg. • Steps for the 1st experiment: • 1. Place the uncooked egg on a plate and start it spinning. 2. Touch it lightly with your fingertip to stop the egg spinning.3. Once the egg stops take your finger away immediately. • What happens to the egg? The shell of the egg actually stops spinning but the inside (yolk and egg white) keeps spinning. Because the inside of the raw egg is a liquid, it makes the egg start to spin again. This force is called inertia. • Steps for the 2nd experiment: • 1. Place the hard-boiled egg on a plate and start it spinning.2. Touch it lightly with your fingertip to stop the egg spinning.3. Once the egg stops take your finger away immediately. • What happens to the egg? The boiled egg stops spinning because the inside contents of the egg are a solid mass. • Steps for the 3rd experiment: • 1. Place both eggs on the plates (one on each plate). 2.Start both eggs spinning at the same time.3. Place your finger on each egg at the same time to quickly stop them spinning.4. Let go of both eggs at the same time. • Now you can compare how the hard-boiled egg stops spinning and the raw egg keeps spinning.
Newton’s first law is often referred to as the Law of Inertia. Inertia is a property that describes an object’s resistance to changes in motion. if an object is moving, inertia keeps it moving. if an object is at rest, inertia keeps it at rest. Mass – is the amount of matter in an object. Mass is a measure of inertia. the more mass an object has the more inertia it has. This means it will take more force to get it to accelerate. the opposite is also true: less mass, less inertia, less force. mass is measured in grams. Law of Inertia
How are mass and inertia related? • The more matter in an object, the harder it is to get the object to accelerate or you could say the harder it is to overcome the object’s inertia.
Bell Work 1/28/11 Please answer #1, 2, and 4 on page 47 in the book.
Bell Work 1/31/11– choose the correct word to fill in the blanks: force, inertia, motion, net force, Newton’s first law, unbalanced force • _______ is the change of position over time. • The overall force acting on an object when all forces are combined is called _____ • A force that can change the motion of an object is called a(n) ________. • A(n) _______ is a push or a pull. • Objects at rest remain at rest, and objects in motion remain in motion at the same velocity, unless acted on by an unbalanced force. This statement describes ____. • The resistance of an object to a change in speed or direction is called_______.
Force 2.2 Notes • Newton’s Second Law of Motion • Explains a relationship between force, mass and acceleration • Often expressed as: force = mass x acceleration • Simply stated: An object’s acceleration depends on the mass of an object and the strength and direction of the force acting on it.
Force = mass x acceleration • Units: • acceleration – m/s/s • mass – kg • force – kg x m/s/s or Newton (N)
Practice • If a 5 kg ball is accelerating 1.2 m/s2, what is the force on it? • A person on a scooter is accelerating 2m/s2. If the person has a mass of 50 kg, how much force is acting on that person?
3. If a team pulls with a combined force of 9000N on an airplane with a mass of 30,000kg what is the acceleration of the airplane? 4. Half the people on the team decide not to pull the airplane. The combined force of those left is 4500 N, while the airplane’s mass is still 30,000 kg. What is the acceleration?
5. A model rocket is accelerating at 2 m/s2. The force on it is 1 N. What is the mass of the rocket? 6. A boy pushes a shopping cart with a force of 10 N, and the cart accelerates 1 m/s2. What is the mass of the cart?
Centripetal force – any force that keeps an object moving in a circle
Bell Work 2/7/11 Please use the back of the bell work sheet from last week • What is Newton’s First Law of motion? • What is Newton’s Second Law of motion? • Give an example of centripetal force.
Bell Work 2/8/11 • A model rocket is accelerating at 6 m/s2. The force on it is 2 N. What is the mass of the rocket? • Another model rocket that has a mass of 15 kg is accelerating at 5 m/s2. What is the force being applied to the rocket? • A girl pushes a 10 kg shopping cart with a force of 30 N. What is the acceleration of the cart?
Force Notes 2.3 Newton’s Third Law – states that for every action there is a reaction
Bell Work 2/9/11 • Identify the action/reaction force pair involved when you catch a ball. • Explain the difference between balanced forces and action/reaction forces. • A man pushes on a wall with a force of 50 N. What are the size and the direction of the force that the wall exerts on the man?
Force 2.4 Notes Objects in motion have momentum. Which would have more momentum a bowling ball being thrown at a wall or a tennis ball? Momentum – A measure of mass in motion. The momentum of an object is the product of its mass and velocity Formula to calculate momentum Momentum = mass x velocity p = mv
Momentum Calculations Example 1 - What is the momentum of a 1.5 kg ball moving at 2 m/s? Example 2 – A 6 kg ball is moving with a velocity of 2 m/s. What is the ball’s momentum? Example 3 – What is the momentum of a 0.5 kg ball moving at 0.5 m/s?
momentum • Momentum is a property of a moving object.
Momentum can be transferred from one object to another If two objects involved in a collision have very different masses, the one with the less mass has a greater change in velocity. Collision – a situation in which two objects in close contact exchange energy and momentum What happens with 2 bumper cars?
forces in collision • Forces in collisions are equal and opposite.
Momentum is conserved Conservation of momentum – states that the total momentum of a system of objects does not change, as long as no outside forces are acting on that system.
total momentum momentum 1 momentum 2 • Momentum is conserved in collisions.
Bell Work – 2/10/11 Complete # 11-16 on page 71. You only have to write the letter of the answer.
Bell Work 2/16/11 Give an example of each of Newton’s 3 Laws. Make sure to explain in detail how each example relates to Newton’s Laws.
Bell Work 2/17/11 Write complete sentences! • What is the difference between the momentum of bowling ball and a baseball that are moving at the same velocities? • What is the difference between a balanced force and an unbalanced force? Please get out your study guide and review for the test.