40 likes | 128 Views
Macro BWV(bu,bl,bb,alfa,beta) for calculating spectra for J´dependent bandwidth. BWV(-80,40,0.1,0.08,1). Intersect value, b. Lower limit -x axis cm-1. Slope, a. Upper limit X-axis cm-1. X axis spacing Between points. For bw = a J´+ b; bw = bandwidth. For example, see next page:.
E N D
Macro BWV(bu,bl,bb,alfa,beta) for calculating spectra for J´dependent bandwidth BWV(-80,40,0.1,0.08,1) Intersect value, b Lower limit -x axis cm-1 Slope, a Upper limit X-axis cm-1 X axis spacing Between points For bw = a J´+ b; bw = bandwidth For example, see next page:
Bw(1xhv) 280307; C2H2; Agust,heima/../bwcalc-ak270307.pxp & bwcalc-ak280307.ppt; T=214, B´=1.1086, D´=1e-6, bw=0.025 J´´ + 0.75 (for 1xhv scale!) Exp. Spectrum: actaddsys vs actaddxs, scaled (C2+ ion REMPI) NB!: exp. Spectrum is smoothed bw = a J´+ b; J´ Lower limit -x axis = -80 cm-1 1xhv Upper limit X-axis +40 cm-1
Program (inside bwcalc-ak270307.pxp & bwcalc-ak290307.pxp): Macro BWV(bl,bu,bb,alfa,beta) // NB: written for absorption wave length of pt-nt = 1200 variable/D xyz, bu,bl,bb,alfa,beta Prompt bl, "deltanjumin:" Prompt bu, "deltanjumax:" Prompt bb, "deltadeltanju:" alfabeta(0) = alfa alfabeta(1) = beta par(0)=bl par(1)=bu par(2)=bb xyz=abso() EndMacro Function abso() Variable nn,jj, bw, ma TT=0 OT=0 PT=0 QT=0 RT=0 ST=0 nn=0 ma=(par(1)-par(0))/par(2) // print ma gx=par(2)*x+par(0) // print alfabeta(0), alfabeta(1), bw
DO jj=0 DO bw=alfabeta(0)*(jj-2)+alfabeta(1) OT[nn]=OT[nn]+(wa_yO(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xO(jj))^2) bw=alfabeta(0)*(jj-1)+alfabeta(1) PT[nn]=PT[nn]+(wa_yP(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xP(jj))^2) bw=alfabeta(0)*(jj)+alfabeta(1) QT[nn]=QT[nn]+(wa_yQ(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xQ(jj))^2) bw=alfabeta(0)*(jj+1)+alfabeta(1) RT[nn]=RT[nn]+(wa_yR(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xR(jj))^2) bw=alfabeta(0)*(jj+2)+alfabeta(1) ST[nn]=ST[nn]+(wa_yS(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xS(jj))^2) // print OT[nn] jj=jj+1 while(jj-99) TT[nn]=ST[nn]+RT[nn]+QT[nn]+PT[nn]+OT[nn] nn=nn+1 while(nn-ma-1) End