1 / 4

BWV(-80,40,0.1,0.08,1)

Macro BWV(bu,bl,bb,alfa,beta) for calculating spectra for J´dependent bandwidth. BWV(-80,40,0.1,0.08,1). Intersect value, b. Lower limit -x axis cm-1. Slope, a. Upper limit X-axis cm-1. X axis spacing Between points. For bw = a J´+ b; bw = bandwidth. For example, see next page:.

manju
Download Presentation

BWV(-80,40,0.1,0.08,1)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Macro BWV(bu,bl,bb,alfa,beta) for calculating spectra for J´dependent bandwidth BWV(-80,40,0.1,0.08,1) Intersect value, b Lower limit -x axis cm-1 Slope, a Upper limit X-axis cm-1 X axis spacing Between points For bw = a J´+ b; bw = bandwidth For example, see next page:

  2. Bw(1xhv) 280307; C2H2; Agust,heima/../bwcalc-ak270307.pxp & bwcalc-ak280307.ppt; T=214, B´=1.1086, D´=1e-6, bw=0.025 J´´ + 0.75 (for 1xhv scale!) Exp. Spectrum: actaddsys vs actaddxs, scaled (C2+ ion REMPI) NB!: exp. Spectrum is smoothed bw = a J´+ b; J´ Lower limit -x axis = -80 cm-1 1xhv Upper limit X-axis +40 cm-1

  3. Program (inside bwcalc-ak270307.pxp & bwcalc-ak290307.pxp): Macro BWV(bl,bu,bb,alfa,beta) // NB: written for absorption wave length of pt-nt = 1200 variable/D xyz, bu,bl,bb,alfa,beta Prompt bl, "deltanjumin:" Prompt bu, "deltanjumax:" Prompt bb, "deltadeltanju:" alfabeta(0) = alfa alfabeta(1) = beta par(0)=bl par(1)=bu par(2)=bb xyz=abso() EndMacro Function abso() Variable nn,jj, bw, ma TT=0 OT=0 PT=0 QT=0 RT=0 ST=0 nn=0 ma=(par(1)-par(0))/par(2) // print ma gx=par(2)*x+par(0) // print alfabeta(0), alfabeta(1), bw

  4. DO jj=0 DO bw=alfabeta(0)*(jj-2)+alfabeta(1) OT[nn]=OT[nn]+(wa_yO(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xO(jj))^2) bw=alfabeta(0)*(jj-1)+alfabeta(1) PT[nn]=PT[nn]+(wa_yP(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xP(jj))^2) bw=alfabeta(0)*(jj)+alfabeta(1) QT[nn]=QT[nn]+(wa_yQ(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xQ(jj))^2) bw=alfabeta(0)*(jj+1)+alfabeta(1) RT[nn]=RT[nn]+(wa_yR(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xR(jj))^2) bw=alfabeta(0)*(jj+2)+alfabeta(1) ST[nn]=ST[nn]+(wa_yS(jj)*(sqrt(ln(2)))*2)/(sqrt(pi)*bw)*exp(-(2*sqrt(ln(2))/bw)^2*(gx-w_xS(jj))^2) // print OT[nn] jj=jj+1 while(jj-99) TT[nn]=ST[nn]+RT[nn]+QT[nn]+PT[nn]+OT[nn] nn=nn+1 while(nn-ma-1) End

More Related