1 / 22

NEMO-3 Double Beta Decay Experiment: Last Results

NEMO-3 Double Beta Decay Experiment: Last Results. A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration). NEMO Collaboration. CENBG , IN2P3-CNRS et Université de Bordeaux, France IReS , IN2P3-CNRS et Université de Strasbourg, France

Download Presentation

NEMO-3 Double Beta Decay Experiment: Last Results

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)

  2. NEMO Collaboration • CENBG, IN2P3-CNRS et Université de Bordeaux, France • IReS, IN2P3-CNRS et Université de Strasbourg, France • LAL, IN2P3-CNRS et Université Paris-Sud, France • LPC, IN2P3-CNRS et Université de Caen, France • LSCE, CNRS Gif sur Yvette, France • IEAP, Czech Technical University, Prague, Czech Republic • Charles University, Prague, Czech Republic • INL, Idaho Falls, USA • ITEP, Moscou, Russia • JINR, Dubna, Russia • JYVASKYLA University, Finland • MHC, Massachusets ,USA • Saga University, Japan • UCL London, UK • FMFI, Comenius University, Bratislava, Slovakia

  3. NEMO-3 Double Beta Decay Experiment: Last Results PLAN I. Introduction II. NEMO-3 detector III. Results IV. Conclusion

  4. I. Introduction 0+ _______ ////// 100Tc 0+_______ /////// 100Mo 0+ ______ 2+ ______ 0+ _____ ////// 100Ru 100Mo 100Ru + 2e- 100Mo 100Ru + 2e- + χ0 100Mo 100Ru + 2e- + 2ν Qββ= 3.033 MeV

  5. NEUTRINOLESS DOUBLE BETA DECAY Experimental signature: 2 electrons E1+ E2=Q

  6. Oscillation experiments  Neutrino is massive!!! • However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana? ) and cannot provide information about the absolute value of mass (because the m2 is measured). • This information can be obtained in 2-decay experiments. <m> = Uej2 eijmj Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases j.

  7. What one can extract from 2β-decay experiments?  • Nature of neutrino mass (Dirac or Majorana?). • Absolute mass scale (value or limit on m1). • Type of hierarchy (normal, inverted, quasi-degenerate). • CP violation in the lepton sector.

  8. Neutrinoless double beta decay is being actively searched, because it is closely related to many fundamental concepts of nuclear and particle physics: • - the lepton number nonconservation; • - the existence of neutrino mass and its origin • (Dirac or Majorana?); • - the presence of right-handed currents in electroweak • interactions; • - the existence of Majoron; • - the structure of Higg's sector; • - supersymmetry; • - heavy sterile neutrino; • - the existence of leptoquarks.

  9. 20 sectors B(25 G) 3 m Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks) 4 m Able to identify e-, e+, g and a The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e. Source: 10 kg of  isotopes cylindrical, S = 20 m2, 60 mg/cm2 Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H2O Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs

  10. Cathodic rings Wire chamber PMTs Calibration tube scintillators bb isotope foils

  11. bb2n measurement bb0n search bb decay isotopes in NEMO-3 detector 116Cd405 g Qbb = 2805 keV 96Zr 9.4 g Qbb = 3350 keV 150Nd 37.0 g Qbb = 3367 keV 48Ca 7.0 g Qbb = 4272 keV 130Te454 g Qbb = 2529 keV External bkg measurement natTe491 g 100Mo6.914 kg Qbb = 3034 keV 82Se0.932 kg Qbb = 2995 keV Cu621 g (All enriched isotopes produced in Russia)

  12. Transverse view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Transverse view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Longitudinal view Longitudinal view 100Mo foil Vertex emission Geiger plasma longitudinal propagation 100Mo foil Vertex emission Deposited energy: E1+E2= 2088 keV Internal hypothesis: (Dt)mes –(Dt)theo = 0.22 ns Common vertex: (Dvertex) = 2.1 mm Scintillator + PMT (Dvertex)// = 5.7 mm • Trigger: at least 1 PMT > 150 keV •  3 Geiger hits (2 neighbour layers + 1) • Trigger rate = 7 Hz • bb events: 1 event every 2.5 minutes Criteria to select bb events: • 2 tracks with charge < 0 • 2 PMT, each > 200 keV • PMT-Track association • Common vertex • Internal hypothesis (external event rejection) • No other isolated PMT (g rejection) • No delayed track (214Bi rejection) bb events selection in NEMO-3 Typical bb2n event observed from 100Mo

  13. Data • Data 22 Monte Carlo 22 Monte Carlo Background subtracted Background subtracted 100Mo 22 preliminary results (Data Feb. 2003 – Dec. 2004) Angular Distribution Sum Energy Spectrum 219 000 events 6914 g 389 days S/B = 40 219 000 events 6914 g 389 days S/B = 40 NEMO-3 NEMO-3 100Mo 100Mo E1 + E2 (keV) Cos() T1/2 = 7.11± 0.02 (stat) ± 0.54 (syst)  1018 y Phys Rev Lett 95, 182302 (2005) 7.37 kg.y

  14. NEMO-3 932 g 389 days 2750 events S/B = 4 82Se Background subtracted • Data 22 Monte Carlo E1+E2 (keV) NEMO-3 NEMO-3 NEMO-3 37 g 168.4 days 449 events S/B = 2.8 405 g 168.4 days 1371 events S/B = 7.5 5.3 g 168.4 days 72 events S/B = 0.9 116Cd 96Zr 150Nd Data Data Data bb2n simulation bb2n simulation bb2n simulation E1+E2 (MeV) E1+E2 (MeV) E1+E2 (MeV) 22 preliminary results for other nuclei 82Se T1/2 = 0.96 ± 0.03 (stat) ± 0.1 (syst)  1020 y 116Cd T1/2 = 2.8 ± 0.1 (stat) ± 0.3 (syst)  1019 y (SSD) 150Nd T1/2 = 9.7 ± 0.7 (stat) ± 1.0 (syst)  1018 y 96ZrT1/2 = 2.0 ± 0.3 (stat) ± 0.2 (syst)  1019 y Background subtracted

  15. 48Ca. 22 preliminary result (Esmall > 0.6 or 0.7 MeV, cos(q) < 0.0) Esmall > 0.7 MeV cos(q)<0.0 Esmall > 0.6 MeV cos(q)<0.0 Very Small Background !! T1/2 = [3.9±0.7(stat)±0.6(syst)]·1019 y

  16. HSD, higher levels contribute to the decay SSD simulation 1+ SSD, 1+ level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100Tc 0+ 100Mo Single electron spectrum different between SSD and HSD Simkovic, J. Phys. G, 27,2233, 2001 Esingle (keV) bb results for 100Mo T1/2 = 7.11 ± 0.02 (stat) ± 0.54 (syst)  1018 y Phys. Rev. Lett. 95 (2005) 182302 SSD model confirmed Decay to the excited 0+ state of 100Ru T1/2 = 5.7+1.3-0.9 (stat) ± 0.8 (syst)  1020 y To be published soon bb0n Phase I + II ( 587d) Use MC Limit approach: shape information, different background level for PI and PII E1+E2>2 MeV 12952 evs MC = 12928 ± 70 e0n=18.1 % T1/2 > 5.6∙1023 y, 90% CL Window method [2.78-3.20] MeV, (690d) 14 evs MC = 13.4 e0n=8.2 % T1/2 > 5.8∙1023 y, 90% CL

  17. bb results for 82Se T1/2 = 9.6 ± 0.3 (stat) ± 1.0 (syst)  1019 y Phys. Rev. Lett. 95 (2005) 182302 bb0n Phase I + II ( 587d) Use MC Limit approach E1+E2>2 MeV 238 evs, MC = 240.5 ± 7, e0n=17.6 % T1/2 > 2.7∙1023 y, 90% CL Window method [2.62-3.20] MeV, (690d) 7 evs, MC = 6.4, e0n=14.4 % T > 2.1∙1023 y, 90% CL

  18. Best present results: 0 decay

  19. References [1] F. Simkovic, G. Pantis, J.D. Vergados and A. Faessler, Phys. Rev. 60 (1999) 055502. [2] S. Stoica and H.V. Klapdor-Kleingrothaus, Nucl. Phys. A 694 (2001) 269. [3] O. Civitarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867. [4] V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Nucl. Phys. A 766 (2006) 107.

  20. Decay with Majoron emission NEMO-3 results * R.Arnold et al. Nucl. Phys. A765 (2006) 483

  21. NEMO-3 expected sensitivity For 5 years of data: 100Mo: T1/2 ~ 2·1024 y (90% C.L.) <m> < 0.3 – 1.4 eV 82Se: T1/2 ~ 8 ·1023 y (90% C.L.) <m> < 0.6 – 1.6 eV

  22. CONCLUSION 1. New strong limits on 2β(0) decay of 100Mo and 82Se have been obtained: T1/2 > 5.8·1023 y (<mν> < 0.6-2.7 eV) T1/2 > 2.1·1023 y (<mν> < 1.2-3.2 eV) 2. New strong limits on different types of 2β(0νM) decay of 100Mo and 82Se have been obtained. 3. Precise investigation of 2β(2) decay for many nuclei has been done. 4. Detector has been running under “radon-free” conditions and all results will be improved in the future.

More Related