1.16k likes | 1.53k Views
Primer Design & Restriction Analysis 10 th April 2013. Carrie Iwema , PhD, MLS, AHIP Information Specialist in Molecular Biology Health Sciences Library System University of Pittsburgh iwema@pitt.edu http://www.hsls.pitt.edu/molbio. Goals:. PCR primer construction & analysis
E N D
Primer Design & Restriction Analysis10th April 2013 Carrie Iwema, PhD, MLS, AHIP Information Specialist in Molecular Biology Health Sciences Library System University of Pittsburgh iwema@pitt.edu http://www.hsls.pitt.edu/molbio
Goals: • PCR primer construction & analysis • Restriction digestion & mapping http://www.hsls.pitt.edu/molbio
Tools: • Primer Analysis & Design • NetPrimer • Primer3Plus • Primer-BLAST • Restriction Mapping • NEBcutter • Webcutter http://www.hsls.pitt.edu/molbio
Primer Analysis & Design A little something to get you in the mood… http://www.hsls.pitt.edu/molbio
Polymerase Chain Reaction (PCR) 1983-Kary Mullis • very simple • exponential amplification • similar to natural DNA replication The primary reagents, used in PCR are: • TemplateDNA–DNA sequence to amplify • DNA nucleotides–building blocks for new DNA • Taqpolymerase–heat stable enzyme catalyzes new DNA • Primers–single-stranded DNA, ~20-50 nucleotides, complimentary to a short region on either side of template DNA http://www.hsls.pitt.edu/molbio
Polymerase Chain Reaction (PCR) • Raise temperature (94-98), denature DNA strands • Lower temp (50-65), anneal primers • Increase temp (72-80), allow time for extensions • Repeat process 25-40X http://www.hsls.pitt.edu/molbio
Things to consider for primer design… • Primer-Dimer formation • Secondary Structures in Primers • Illegitimate Priming in Template DNA due to repeated sequences • Incompatibility with PCR conditions SOURCE: NCBI http://www.hsls.pitt.edu/molbio
Primer-Dimer formation SOURCE: NCBI • homology within a primer (self dimer) or between the sense and anti-sense primer (cross dimer) • bonding of the two primers, increasing primer-dimerartifact and reducing product yields • particularly problematicwhen the homology occurs at the 3' endof either primer http://www.hsls.pitt.edu/molbio
Self Dimer (example) SOURCE: NCBI internal dimer 3’ end dimer • The primer sequence is ATCAGCTGTAGAT • It forms 2 dimers: • internal dimerwhere 3rd-8th bases of primer in 5‘3' (starting from 5') bond with 6th-11th bases (starting from 3') when primer is placed in reverse direction • 3' end dimerwhere the last 3 bases (starting from 5') of primer placed in 5‘3' direction bond with last three base (starting from 3') placed in reverse direction. http://www.hsls.pitt.edu/molbio
Cross Dimer (example) 3’ cross dimer • Sense primer sequence is ATCAGCTGTAGAT • Anti-sense primer sequence is ATAGTGTAGAT • Forms one cross dimerat the 3' end SOURCE: NCBI http://www.hsls.pitt.edu/molbio
Secondary Structure in Primers • Hairpin loop • formed when primer folds back upon itself • held in place by intramolecular bonding • can occur with as few as 3 consecutive homologous bases • stability measured by the free energy The free energy of the loop is based upon the energy of the intramolecular bond and the energy needed to twist the DNA to form the loop. • If free energy >0, the loop is too unstable to interfere with the reaction • If free energy <0, the loop could reduce the efficiency of amplification http://www.hsls.pitt.edu/molbio
Hairpin Loop (example) SOURCE: NCBI 3’ end hairpin internal hairpin • The primer sequence is ATCGATATTCGAAGAT • It forms two hairpins: • 3' end hairpinwhere the primer folds back upon itself and first and last 3 bases bond together • internal hairpinwhere 2nd-5th and 9th-12th bases bond together http://www.hsls.pitt.edu/molbio
Basic Primer Analysis & Design Software • NetPrimer • http://www.premierbiosoft.com/netprimer/ • Primer3Plus • http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi • Primer-BLAST • http://www.ncbi.nlm.nih.gov/tools/primer-blast/ http://www.hsls.pitt.edu/molbio
NetPrimer • http://www.premierbiosoft.com/netprimer/ • From PREMIER Biosoft • Free • Major features: • Primer properties: Tm , molecular weight, GC%, optical activity (both in nmol/A260 & µg/A260), DG, 3' end stability, DH, DS, and 5' end DG • Secondary structures: Hairpins, dimers, cross dimers, palindromes, repeats and runs • Primer rating: Quantitative prediction of the efficiency of a primer • Comprehensive report: Prints complete primer analysis for an individual primer or primer pair • Primer pairs: Analyze individual primers or primer pairs • Comprehensive help: Details all the formulas and references used in primer analysis algorithm http://www.hsls.pitt.edu/molbio
NetPrimer Enter sequence here http://www.hsls.pitt.edu/molbio
NetPrimer—sense primer http://www.hsls.pitt.edu/molbio
NetPrimer—help http://www.hsls.pitt.edu/molbio
NetPrimer—theories & formulas http://www.hsls.pitt.edu/molbio
NetPrimer—antisense primer http://www.hsls.pitt.edu/molbio
NetPrimer—antisense hairpin The most negative (i.e., most stable) DG is used for calculating the rating. http://www.hsls.pitt.edu/molbio
NetPrimer—antisense dimer http://www.hsls.pitt.edu/molbio
NetPrimer—cross dimer http://www.hsls.pitt.edu/molbio
NetPrimer—3’ & 5’ stability An ideal primer has a stable 5' end and an unstable 3' end. Unstable 3’ = limits bonding to false priming sites. The lower this value, numerically, the more liable the primer is to show secondary bands. less negative = less false priming. Stable 5’ = called the GC Clamp, it increases bonding to the target site. The lower this value, numerically, the more efficient is the primer. more negative = better bonding. http://www.hsls.pitt.edu/molbio
NetPrimer—rating The rating of a primer provides a quick way of measuring the predicted efficiency of a primer as well as choosing between closely matched primers. The higher the rating of a primer, the higher its amplification efficiency. http://www.hsls.pitt.edu/molbio
NetPrimer—DG DG= DH – T * DS = free energy of the primer DH = enthalpy (internal energy) of primer T = temperature DS = entropy (unavailable energy) of primer Example: primer sequence = ATTCGCGGATTAGCCGAT DG = -154500 cal/mol – (298.15 * -403 cal/°K/mol) = -34.35 kcal/mol Rating = 100 + [(DG dimer * 1.8) + (DG hairpin * 1.4)] Example: 100 + [(-10.36 kcal/mol * 1.8) + (-3.28 * 1.4)] 100 + [-18.648 + -4.592] 100 + -23.24 76.76 The higher the rating, the better! http://www.hsls.pitt.edu/molbio
NetPrimer—practice primers Rank these primers with attention to rating, 5’ end DG, and 3’ end stability • atgtgcgaggagaaagtgct • acaaaccctggacttgcatc • cgacttgtcccaggtgtttt • ctgaaaccattggcacacac • ggctgtgaacatggacattg • ggctgaagccaaagctacac http://www.hsls.pitt.edu/molbio
NetPrimer • Ideal for checking primers • To create primers, try Primer3Plus http://www.hsls.pitt.edu/molbio
Primer3Plus • http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi • Select primer pairs to detect a given template sequence • Targets and included/excluded regions can be specified • Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Human Press, Totowa, NJ, pp 365-386 http://www.hsls.pitt.edu/molbio
Primer3Plus http://www.hsls.pitt.edu/molbio
Primer3Plus Design PCR primers to amplify sub region of the sequence (600bp-2600bp) with product size 1800bp-2000bp. http://www.hsls.pitt.edu/molbio
Primer3Plus—getting started click here to retrieve sample sequence, then copy/paste into box http://www.hsls.pitt.edu/molbio
Primer3Plus Design PCR primers to amplify sub region of the sequence (600bp-2600bp) with product size 1800bp-2000bp. http://www.hsls.pitt.edu/molbio
Primer3Plus Design PCR primers to amplify sub region of the sequence (600bp-2600bp) with product size 1800bp-2000bp. http://www.hsls.pitt.edu/molbio
Primer3Plus—results http://www.hsls.pitt.edu/molbio
Primer3Plus—results http://www.hsls.pitt.edu/molbio
Primer3Plus—results http://www.hsls.pitt.edu/molbio
Primer3Plus—Primer3Manager http://www.hsls.pitt.edu/molbio
Primer3Plus—check primers http://www.hsls.pitt.edu/molbio
Primer3Plus—check primers http://www.hsls.pitt.edu/molbio
Primer3Plus—primer info http://www.hsls.pitt.edu/molbio
Primer3Plus—BLAST primers http://www.hsls.pitt.edu/molbio
Primer3Plus—BLAST primers http://www.hsls.pitt.edu/molbio
Primer3Plus—check w/NetPrimer How good are these primers? Analyze with NetPrimer! http://www.hsls.pitt.edu/molbio
Primer3Plus—NetPrimer sense Left (F) primer http://www.hsls.pitt.edu/molbio
Primer3Plus—NetPrimer sense http://www.hsls.pitt.edu/molbio
Primer3Plus—NetPrimer antisense Right (R) primer http://www.hsls.pitt.edu/molbio
Primer3Plus—NetPrimer antisense http://www.hsls.pitt.edu/molbio
Primer-BLAST • http://www.ncbi.nlm.nih.gov/tools/primer-blast/ • Combines primer design (Primer3) and a specificity check (BLAST) • Can also be used w/pre-designed primers • ref: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412702/ http://www.hsls.pitt.edu/molbio
Primer Design Tips • RT-PCR (to avoid unwanted amplification of genomic DNA) • Primer pair should span an intron Or • One of the primers should be at exon-exon junction • SNP issues • May cause mismatch, so pick primers outside of this region • qPCR • Specificity of amplification (amount of PCR product = fluor intensity) http://www.hsls.pitt.edu/molbio
Primer-BLAST click here to retrieve sample sequence, then copy/paste into box http://www.hsls.pitt.edu/molbio