1 / 14

ECE 264 Object-Oriented Software Development

ECE 264 Object-Oriented Software Development. Instructor: Dr. Honggang Wang Fall 2012 Lecture 34: Polymorphism. Lecture outline. Announcements / reminders Exam 3 Review next Monday Sample questions will be uploaded next Tuesday Project Demos: December 7 Code: due December 10

marcus
Download Presentation

ECE 264 Object-Oriented Software Development

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 264Object-Oriented Software Development Instructor: Dr. Honggang Wang Fall 2012 Lecture 34: Polymorphism

  2. Lecture outline • Announcements / reminders • Exam 3 Review next Monday • Sample questions will be uploaded next Tuesday • Project • Demos: December 7 • Code: due December 10 • Tech report/user guide: due December 10 • Lab 10 now due Tuesday • Today • Teaching Evaluations • Polymorphism ECE 264: Lecture 34

  3. Student Evaluation Instructions • Print my last name WANG in the STUDENT NAME box. There is NO need to fill in the corresponding ovals. • Print course and section number26401(for ECE264) in the first 5 positions of the STUDENT ID NUMBER box. There is NO need to fill in the corresponding ovals. • Queries on the Questionnaire are matched to the numbers on the Answer Sheet. E: Strongly Agree; D: Agree; C: Neutral; B: Disagree; A: Strongly Disagree Lecture #21

  4. Polymorphism • Polymorphism: Code/operations behave differently in different contexts • One example: operator overloading • Inheritance-based polymorphism in form of virtual functions • Add virtual to function declaration in .h file • Why use virtual functions? • One benefit of inheritance: code reuse • Another benefit: Can write generic code that works for (hopefully) many specific cases • Take advantage of fact that derived class “is an” object of base class type (with extra/more specific functions) • Virtual functions enable this second benefit ECE 264: Lecture 34

  5. Virtual functions • For example, a base class Animal could have a virtual function eat. • Subclass Fish would implement eat() differently than subclass Wolf • but you can invoke eat() on any class instance referred to as Animal, and get the eat() behaviour of the specific subclass • This allows a programmer to process a list of objects of class Animal, telling each in turn to eat (by calling eat()). ECE 264: Lecture 34

  6. Static binding • All methods are, by default, non-virtual methods. Binding of method call is determined by static type of calling object. Example: Employee e1(“John Smith”, 20); Manager m1(“Bob Jones”, 1500, true); e1 = m1; e1.pay(40); //Calls pay() defined in //Employee ECE 264: Lecture 34

  7. Object pointers & inheritance • Dynamic binding: determine type of object at runtime • With inheritance, pointer to base class supports objects of: • Base class type • Derived class type • Pointers also support dynamic binding! • Allows us to write general code using base class pointers ECE 264: Lecture 34

  8. Static vs. dynamic binding • Methods default to non-virtual  type of object determines method called • With virtual method, can use dynamic binding if using pointers or references Example: Employee e1(“John Smith”, 20; Manager m1(“Bob Jones”, 1500, true); Employee *ePtr; e1 = m1; ePtr = &m1; e1.pay(40); // Calls pay() defined in // Employee ePtr->pay(40); // Calls pay() defined in // Manager ECE 264: Lecture 34

  9. References and virtual methods • Remember: passing arguments by reference essentially passes pointer • Can use virtual methods on references • Example: float payAnyone(Employee &e, float h) { return e.pay(h); } int main() { Employee e1(“John Smith”, 20; Manager m1(“Bob Jones”, 1500, true); payAnyone(e1, 40); // Calls pay() defined in // Employee payAnyone(m1, 40); // Calls pay() defined in // Manager return 0; } ECE 264: Lecture 34

  10. Virtual functions and member functions • Calling one member function inside another implicitly uses pointers (and therefore dynamic binding) • If f1 is a function of class C • Calling f1 in another class C function is equivalent to: this->f1(); • Example: assume both Employee & Manager have virtual function printPay(float hoursWorked) void Employee::print(float hoursWorked) { cout << “Name: “ << name << endl; cout << “Pay rate: “ << payRate << endl; printPay(hoursWorked); // Uses dynamic // binding; will call // Manager version in // Manager objects } ECE 264: Lecture 34

  11. Destructors and virtual functions • If a class has virtual functions, the destructor should be virtual • Often use pointers with dynamic allocation: Employee *ePtr; char eType = ‘e’; while (eType != ‘x’) { cin >> eType; if (eType == ‘e’) ePtr = new Employee(“John Smith”, 20); else if (eType == ‘m’) ePtr = new Manager(“Bob Jones”, 1500, true); if (ePtr != NULL) ePtr->print(40); delete ePtr; // Needs virtual destructors to ensure // either ~Employee() or ~Manager() is // called correctly ePtr = NULL; } ECE 264: Lecture 34

  12. Example (functions in red are virtual) If we have: Employee e1(“Bob”,25); Manager m1(“Jim”, 40, true); Employee *ePtr; Manager *mPtr; e1 = m1; ePtr = &m1; mPtr = &m1; Which statements are legal? Which function version gets called (for virtual functions)? e1.isSalaried(); m1.getName(); e1.pay(40); ePtr->pay(40); mPtr->print(40); e1.printPay(40); ECE 264: Lecture 34

  13. Example solution If we have: Employee e1(“Bob”,25); Manager m1(“Jim”, 40, true); Employee* ePtr; Manager *mPtr; e1 = m1; ePtr = &m1; mPtr = &m1; Which statements are legal? Which function version gets called (for virtual functions)? e1.isSalaried();  ILLEGAL m1.getName();  calls Manager.getName() e1.pay(40);  calls Employee.pay(40) ePtr->pay(40);  calls Manager.pay(40) mPtr->print(40);  calls Employee.print(40), which calls Manager.printPay(40) e1.printPay(40);  calls Employee.printPay(40) ECE 264: Lecture 34

  14. Final notes • Next time • Abstract classes • Acknowledgements: this lecture borrows heavily from lecture slides provided with the following texts: • Deitel & Deitel, C++ How to Program, 8th ed. • Etter & Ingber, Engineering Problem Solving with C++, 2nd ed. ECE 264: Lecture 34

More Related