1 / 8

海洋大學 通訊與導航工程學系 『 微積分 』 課程簡介 , 2013

海洋大學 通訊與導航工程學系 『 微積分 』 課程簡介 , 2013. 曾慶耀: b0102@ntou.edu.tw Room803. X7203 http://smcl.cge.ntou.edu.tw. 1>Text book : Calculus, Early Transcendental Functions By: [Robert Smith, and Roland Minton] 2012, Fourth Edition 代理書局 : 海大五南書局 (NT.$900)

mardi
Download Presentation

海洋大學 通訊與導航工程學系 『 微積分 』 課程簡介 , 2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 海洋大學 通訊與導航工程學系『微積分』課程簡介, 2013 曾慶耀:b0102@ntou.edu.tw Room803. X7203 http://smcl.cge.ntou.edu.tw

  2. 1>Text book : Calculus, Early Transcendental Functions By: [Robert Smith, and Roland Minton] 2012, Fourth Edition 代理書局 :海大五南書局(NT.$900) 2>References(Similar) : Calculus,[Larson] : 歐亞書局 : 理工微積分,[莊紹容]:東華書局 (Advanced) : Calculus,Vol. I,II [Apostol] 3>Other Resources : 1.台大數學系微積分教學網站 2.中央研究院數學所:「數學傳播」 3.天下文化:微積分之屠龍刀、倚天劍

  3. 4>Grading policy H.W. : 20% (Given weekly,due one week after) Quiz : 10% Mid-term Exam : 35% Final Exam : 35% 5> ‧Office Hours : Thursday 3:00 – 5:00 p.m (Room 803) X7203 ‧H.W. discussion : To be arranged by Graders (補強教學,有益) ‧Graders : X7220,Room916 6>Website : http://smcl.cge.ntou.edu.tw (資料下載)

  4. 1 st semester : Ch.1 : Limitsand Continuity Ch.2 : Differentiations Ch.3 : Application of Differentiation Ch.4 : Integrals Ch.5 : Applications of Definite Integrals Ch.6 : Technique of Integration (Ch.7) : First Order Differential Equations 7>Topics to be covered

  5. Second semester : Ch.8 : Series Ch.9 : Parametric Eq. and PolarCoordinates Ch.10 : Vector and Geometry of Space Ch.11 : Vector – Valued Functions Ch.12 : Functions of Several Variables and Partial Differentiation Ch.13 : Multiple Integrals Ch.14 : Vector Calculus

  6. 8>CalculusIntegration(歷史悠久, Σ三角形,求圓面積; 觀念容易,運算較繁) + Differentiation(發展較晚,觀念較抽象, 運算容易); Newton,Leibenitz貢獻相當 (牛頓獨享盛名) 9>Why Calculus: ‧To study the behavior of dynamic system(動態系統) ‧探討”改變”(change)/變化 例:(電場變化->感應磁場;反之亦然) ‧若已達”穩態”(不再改變) =>線性代數(聯立方程即可) 不勞微積分

  7. 10>極限(Limit)之概念是,微積分之基石(級數+數列)10>極限(Limit)之概念是,微積分之基石(級數+數列) f(x) f(X+ΔX) X+ΔX X f(X) a b ΔX Note‧無窮小ε; 至小無內(莊子天下篇/惠施) ‧無窮大∞; 至大無外 ‧一尺之棰, 日取其半, 萬世不竭.

  8. 11>教學目標~ ‧Guided tour through the text book ‧幫助想唸書之同學念完課本, 且不覺得太吃力 ‧告知重點,指引觀念(少就是多,慢就是快) (最好有趣,至少清楚) 12>Note : Ex(Hw)須自己動手做,才有實效(做功→能量提升) Group Study OK (沒有所謂”輕鬆學”,No pain,No gain) 13>上課 : 缺席≧3須注意,禁止交談,小歇OK ,歡迎提問 考試 : 評量學習成效;絕對禁止投機(助人) 14>學習成效指標:運算技巧 → 清晰觀念 →活用(解決實際問題)→創新理論 15>教育目標:成就自己,服務他人。

More Related