250 likes | 392 Views
eNTERFACE 2005. Project 3 : Biologically-driven Musical Instrument. Quentin Noirhomme - Jean-Julien Filatriau Communication and Remote Sensing Lab. Université catholique de Louvain. July 18th 2005. Mapping. ElectroEncephalogram. Sound Synthesis. EKG. EMG.
E N D
eNTERFACE 2005 Project 3 :Biologically-driven Musical Instrument Quentin Noirhomme - Jean-Julien Filatriau Communication and Remote Sensing Lab. Université catholique de Louvain July 18th 2005
Mapping ElectroEncephalogram Sound Synthesis EKG EMG Biologically-driven musical instrument Objectives Analysis July 18th 2005
Biologically-driven musical instrument EEG: Origin Brain Facts July 18th 2005
Biologically-driven musical instrument EEG Recording DTI cap July 18th 2005
Biologically-driven musical instrument EEG July 18th 2005
Biologically-driven musical instrument EEG • Noise • Background activities • Activities with partial control • used for Brain Computer Interface • Training possible July 18th 2005
Biologically-driven musical instrument EEG: Rhythms • Alpha • 8-13 Hz • first discovered • first used for music July 18th 2005
Biologically-driven musical instrument EEG: Rhythms • Alpha • Delta • 0.1-3.5 Hz • Theta • 4-7.5 Hz July 18th 2005
Biologically-driven musical instrument EEG: Rhythms • Alpha • Delta • Theta • Mu • 8-12 Hz • Beta • 14-30 Hz July 18th 2005
Biologically-driven musical instrument Mu and Beta rhythms Wolpaw et al., 2002 July 18th 2005
Biologically-driven musical instrument Event Related Potentials July 18th 2005
Biologically-driven musical instrument Topography July 18th 2005
Biologically-driven musical instrument ElectroCardioGram July 18th 2005
Biologically-driven musical instrument ElectroMyoGram July 18th 2005
ElectroEncephalogram Sound Synthesis EKG EMG Biologically-driven musical instrument Objectives Mapping Analysis July 18th 2005
Biologically-driven musical instrument EEG Analysis • Frequency Analysis • Fourier, auto-regressive modelling • Wavelets • Event detection • Localization • Hjort Analysis July 18th 2005
ElectroEncephalogram Sound Synthesis EKG EMG Biologically-driven musical instrument Objectives Mapping Analysis July 18th 2005
ElectroEncephalogram Sound Synthesis EKG EMG Biologically-driven musical instrument Objectives Mapping Analysis July 18th 2005
Biologically-driven musical instrument Sound synthesis • Sound synthesis • = creation of a sound signal from specific algorithms implemented on a computer. • = synthesis parameters that influence sound characteristics (pitch, spectral content, timbre...) • = ex : additive synthesis, soustractive synthesis, FM synthesis, waveshaping synthesis... • Ex : Frequency modulation synthesis • y(t) = A sin[ωC t + I sin(ωM t ) ] Synthesis parameters July 18th 2005
Gesture transducer Mapping Synthesis model Synthesis parameters Sound Gesture data Gesture Biologically-driven musical instrument Digital music instruments • Real-time sound synthesis for « live interpretation »- Sound synthesis parameters controlled by player’s gestures => interaction allows musician to act on the sound like in a traditional musical instrument => Mapping = correspondance functions between gestures and synthesis parameters. July 18th 2005
Biologically-driven musical instrument Examples of digital music instruments (from LMA, Marseille) The photosonic emulator (training) The Voicer (in live situation) July 18th 2005
Biologically-driven musical instrument Biologically-driven musical instrument • Objective of our project : using infos extracted from EEG/EMG analysis as sound synthesis parameters to drive a digital music instrument.- Two main issues : => synthesis algorithm(s) => adequate « mapping » between EEG/EMG data and sound synthesis parameters.- Previous works in interaction biology/music : => Brouse (2001) : Interharmonium (EEG) => Tanaka (2002) : BioMuse (EMG) => Miranda & Brouse (2005) :BCI-Piano (EEG) July 18th 2005
Biologically-driven musical instrument References • Papers : • « Brain–computer interfaces for communication and control », Wolpaw & al., 2002 • « Toward direct Brain-Computer musical interface », Miranda & Brouse, 2005 • « Musical Performance Practice on Sensor-based Instruments », Tanaka, 2002 • Web sites : • http://www.tele.ucl.ac.be/~noirhom/eNTERFACE3/index.html • http://cmr.soc.plymouth.ac.uk/interaction.htm • http://www.music.mcgill.ca/~brouse/conversation/ July 18th 2005
Biologically-driven musical instrument Team • Benoît MACQ - professor (UCL) • Jean-Julien FILATRIAU - PhD student (UCL) • Quentin NOIRHOMME - PhD student (UCL) • Burak ARSLAN - invited professor (TCTS, Mons) • Rolando BONAL CACERES - professor (La Havane, Cuba) • Andrew BROUSE - PhD student (University of Plymouth) • Julien CASTET - future PhD student (ACROE, Grenoble) • Rémy LEHEMBRE - future PhD student (UCL) • Cédric SIMON - future PhD student (UCL) July 18th 2005