1 / 30

CSE544

CSE544. Wednesday, March 29, 2006. Theory. Relational databases invented by a theoretician (Codd) Fundamental principle: separate the WHAT from the HOW - data independence WHAT: First Order Logic (FO) HOW: Relational algebra (RA). FO Syntax. Given: A vocabulary: R 1 , …, R k

mariko
Download Presentation

CSE544

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSE544 Wednesday, March 29, 2006

  2. Theory • Relational databases invented by a theoretician (Codd) • Fundamental principle: separate the WHAT from the HOW - data independence • WHAT: First Order Logic (FO) • HOW: Relational algebra (RA)

  3. FO Syntax Given: • A vocabulary: R1, …, Rk • An arity, ar(Ri), for each i=1,…,k • An infinite supply of variables x1, x2, x3, … • Constants: c1, c2, c3, ...

  4. FO Syntax • Terms (t) and FO formulas () are: t ::= x | c • ::= R(t1, ..., tar(R)) | ti = tj |   ’ |   ’ | ’ | x. | x.

  5. FO Examples Most interesting case: Vocabulary = one binary relation R (encodes a graph) 1 4 2 3 R=

  6. FO Sentences • Does there exists a loop in the graph ? • Are there paths of length >2 ? • Is there a “sink” node ?   x.R(x,x)   x.y.z.u.(R(x,y)  R(y,z)  R(z,u))   x.y.R(x,y)

  7. Semantics • Given a vocabulary R1, …, Rk • A model is D = (D, R1D, …, RkD) • D = a set, called domain, or universe • RiD D  D  ...  D, (ar(Ri) times) i = 1,...,k

  8. Semantics • Given: • A model D = (D, R1D, ..., RkD) • A formula  • A substitution s : {x1, x2, ...}  D • We define next the relation:meaning “D satisfies with s” D |= [s]

  9. Semantics If (s(t1), ..., s(tn))  RD D |= (R(t1, ..., tn)) [s] D |= (t= t’) [s] If s(t) = s(t’)

  10. Semantics D |= (  ’) [s] If D |= ()[s] and D |= (’) [s] D |= (  ’) [s] If D |= ()[s] or D |= (’) [s] D |= (’) [s] If not D |= ()[s]

  11. First Order Logic: Semantics If for all s’ s.t. s(y) = s’(y) for all variables y other than x, D |= ()[s’] D |= (x.) [s] D |= (x.) [s] If for some s’ s.t. s(y) = s’(y) for all variables y other than x, D |= ()[s’]

  12. FO and Databases • FO:a sentence  is true in D if D |=  • Databases:a formula  with free variables x1, ..., xn defines the query:(D) = {(s(x1), ..., s(xn)) | D |= [s]}

  13. FO Queries • Find all nodes connected by a path of length 2: • Find all nodes without outgoing edges: (x,y)  u.(R(x,u)  R(u,y)) (x)  u.(R(u,x)  y.R(x,y) These are open formulas

  14. In Class • Retrieve all nodes with at least two children • A node x is more important than y if every child of y is also a child of x. Retrieve all ‘most important nodes’ in the graph

  15. FO in Databases

  16. FO Semantics • In FO we express WHAT we want • Sometimes it’s even unclear HOW to get it • See accompanying slides on FO semantics • They explain HOW to get it, but it’s impractical

  17. Relational Algebra • An algebra over relations • Five operators: , -, , s, P • Meaning: R1 R2 = set union R1- R2 = set difference R1 R2 = cartesian product sc(R) = subset of tuples satisfying condition c Pa(R) = projection on the attributes in a

  18. FO  RA P1(s1=2(R)) (x)  R(x,x)  (x,y)  z.u.(R(x,z)  R(z,u)  R(u,y))  P16(s2=34=5(R  R  R)) P16 ((R join2=1 R) join4=1 R)) ? (x)  y.R(x,y)  WHAT  HOW

  19. FO v.s. RA Theorem. Every query in RA can be expressed in FO Proof This shows how to go from HOW to WHAT not very interesting What about the converse ?

  20. The Drinkers/Beers Example • Vocabulary: • Find all drinkers that frequent some bar that serve some beer that they like: Likes(drinker,beer), Serves(bar,beer), Frequents(drinker,bar) (d)  ba. be.(F(d,ba)  L(d,be))

  21. Lots of Fun Examples (in class) • Find drinkers that frequent some bar that serves only beer they like • Find drinkers that frequent only bars that serve some beer they like • Find drinkers that frequent only bars that serve only beer they like

  22. Unsafe FO Queries • Find all nodes that are not in the graph:what’s wrong ?

  23. Unsafe FO Queries • Find all nodes that are connected to “everything”:what’s wrong ?

  24. Unsafe FO Queries • Find all pairs of employees or offices:what’s wrong ? • We don’t want such queries !

  25. Safe Queries A model D = (D, R1D, …, RkD) • In FO: • both D and R1D, …, RkD may be infinite • In databases: • D may infinite (int, string, etc) • R1D, …, RkD are always finite • We call this a finite model

  26. Safe Queries •  is a finite query if for every finite model D, (D) is finite •  is safe, or domain independent, if for every two models D, D’ having the same relations:D = (D, R1D, …, RkD), D’ = (D’, R1D, …, RkD)we have (D) = (D’) • If  is safe then it is also finite (why ?) • Note: book has different but equivalent definition

  27. Safe Queries • Definition. Given D = (D, R1D, …, RkD), the active domain is Da = the set of all constants in R1D, …, RkD • Example. Given a graph D = (D, R) Da = { x | y.R(x,y) z.R(z,x)} • Property. If a query is safe, it suffices to range quantifiers only over the active domain (why ?) • Hence we can compute safe queries

  28. Safe Queries • The safe relational calculus consists only of safe queries. However: • Theorem It is undecidable if a given a FO query is safe. • Need to write only safe queries, but how do we know how which queries are safe ? • Work around: write them in an obviously safe way • Range restricted queries - formally defined in [AHU]

  29. FO v.s. RA Theorem. Every safe query in FO can be expressed in RA Proof From WHAT to HOW this is really interesting and motivated the relational model

  30. Limited Expressive Power • Vocabulary: binary relation R • The following queries cannot be expressed in FO: • Transitive closure: • x.y. there exists x1, ..., xn s.t.R(x,x1)  R(x1,x2)  ...  R(xn-1,xn)  R(xn,y) • Parity: the number of edges in R is even

More Related