640 likes | 707 Views
WUJUD ZAT. Oleh A. Sjaifullah. Kimia adalah. Pengetahuan yang mempelajari materi dan perubahannya. Materi adalah. Apapaun yang memiliki massa dan menempati ruang. Teori Kinetik. Semua partikel (atoms, molekul dan ion) menyusun materi selalu bergerak secara random dan berinteraksi.
E N D
WUJUD ZAT Oleh A. Sjaifullah
Kimia adalah Pengetahuan yang mempelajari materi dan perubahannya Materi adalah Apapaun yang memiliki massa dan menempati ruang
Teori Kinetik Semua partikel (atoms, molekul dan ion) menyusun materi selalu bergerak secara randomdan berinteraksi
Wujud zat • Cara menyusun partikel • Energi partikel • Interaksi/jarak antar partikel
Karakteristik wujud zat Sifat partikel wujud Proximity Energy gerakan Volume bentuk padat close little vibrational definite definite cair close moderate rotational definite indefinite gas far apart a lot translational indefinite indefinite
Jika kondisi partikel (susunan, interaksi dan energi) diubah, maka terjadi perubahan wujud posisi partikel-partikel zat cair & gas tidak tetap, Zat cair dan gas dapat dialirkan/berdifusi =(fluida) Perubahan wujud terjadi dalam siklus air di alam
Sifat-sifat gas Salah satu sifat gas adalah dapat memberikan tekanan. Tekanan gas terjadi akbat dari tumbukan partikel-partikel gas dengan dinding Tekanan yang disebabkan oleh campuran gas-gas yang ada di udara disebut tekanan atmosfir Tekanan adalah…..
Rasakan adanya tekanan gas!! • Mengapa tekanan udara sangat penting? • Adanya angin • Menciptakan mendung dan awan
Hubungan tekanan dan volume gas Hukum Boyle P1V1 = P2V2
Volume and Temperature , tekanan tetap Hukum Charles V2 V1 = T1 T2
Korek gas, hair spray, tabung LPG akan terasa lebih dingin jika digunakan, Karena……………..
Karena partikel gas hampir tidak berinteraksi satu sama lain, jumlah partikel (molekul) gas hanya bisa ditentukan/diukur pada volume, tekanan dan suhu tertentu
Properties of Liquids • Surface tension: the energy required to increase the surface area of a liquid by a unit amount. • Viscosity: a measure of a liquid’s resistance to flow.
ZAT PADAT Karena interaksi yang kuat, posisi partikel-partikel dalam zat padat tidak berubah terhadap satu dengan yang lain Amorf Kristal
Comparison: Amorphous solids Tar, molten glass, molten plastics, and molten butter, consist of large molecules or a mixture of molecules that cannot move readily. As the temperature is lowered, their molecules move more and more slowly and finally stop in random positions. The resulting materials are called amorphous solids or glasses. Such solids lack an ordered internal structure. Common examples include candle wax, butter, glass, and plastics.
Crystals are classified into systems based on the angle their bonds form. *7 common systems Isometric, Hexagonal, Tetragonal, Trigonal, Triclinic, Monoclinic, Orthorhombic
What crystal system does this mineral belong to? Why? • Hexagonal • 3 equilateral axes intersect at angels of 60o , 1 vertical axis intersect at 90o to equilateral axes. • Hexa-six Quartz Beryl http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? GYPSUM MONOCLINIC • 3 unequal axes and 1 unequal intersection that is not at 90o • Mono-one http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? Sugar Isometric • 3 axes are at right angles, all sides equal length. • Iso- same http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? Tetragonal • 3 axes are at right angels, only 2 lateral axes are equal length and it has 4 sides. • Tetra-four WULFENITE http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? ORTHORHOMBIC • 3 unequal axes all at right angles to each other • Ortho-unequal TANZANITE http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? Amazonite Trigonal • 3 equal length axes, 3 equal intersections (not 90o) • Tri- three Note: Hexagonal but with 3 sides not 6 http://www.minerals.net/glossary/glossary.htm
What crystal system does this mineral belong to? Why? Triclinic • 3 unequal axes and 3 unequal intersections not at 90o • Tri-three http://www.minerals.net/glossary/glossary.htm
Using your 3-D structures identify the following into rightful system: Picture 1 Isometric Picture 2 Tetragonal Picture 3 Hexagonal Picture 4 Trigonal Picture 5 ORTHORHOMBIC Picture 6 MONOCLINIC Picture 7 TRICLINIC
Crystal Systems System Axes Angles Unique Symmetry Diagram Examples Isometrica=b=c===90° Four 3-fold Pyrite, Halite, Galena, Garnet, Diamond, Fluorite Tetragonala=bc===90° One 4-fold Wulfenite, Rutile, Zircon, Chalcopyrite Hexagonala=bc=120°, ==90° One 6-fold Quartz, Beryl (Emerald), Apatite, Corundum (Ruby, Sapphire) Orthorhombicabc===90° Three 2-fold Sulfur, Barite, Olivine, Topaz Monoclinicabc==90°, 90° One 2-fold Orthoclase, Malachite, Azurite, Mica, Gypsum , Talc Triclinicabc90° None Turquoise, Kyanite, Albite, Plagioclase
Crystal Systems System Axes Angles Unique Symmetry Diagram Examples Isometric Tetragonal Hexagonal Orthorhombic Monoclinic Triclinic
STRUCTURE OF OTHER SYSTEMS • Struktur NaCl
SOME DEFINITIONS … • Lattice: 3D array of regularly spaced points • Crystalline material: atoms situated in a repeating 3D periodic array over large atomic distances • Amorphous material: material with no such order • Hard sphere representation: atoms denoted by hard, touching spheres • Reduced sphere representation • Unit cell: basic building block unit (such as a flooring tile) that repeats in space to create the crystal structure; it is usually a parallelepiped or prizm
SIMPLE CUBIC STRUCTURE (SC) • • Cubic unit cell is 3D repeat unit • Rare (only Po has this structure) • • Close-packed directions (directions along which atoms touch each other) • are cube edges. • Coordination # = 6 (# nearest neighbors) (Courtesy P.M. Anderson)
ATOMIC PACKING FACTOR • Fill a box with hard spheres • Packing factor = total volume of spheres in box / volume of box • Question: what is the maximum packing factor you can expect? • In crystalline materials: • Atomic packing factor = total volume of atoms in unit cell / volume of unit cell • (as unit cell repeats in space)
ATOMIC PACKING FACTOR a R=0.5a close-packed directions contains 8 x 1/8 = 1 atom/unit cell Adapted from Fig. 3.19, Callister 6e. Lattice constant • APF for a simple cubic structure = 0.52
BODY CENTERED CUBIC STRUCTURE (BCC) • Coordination # = 8 Adapted from Fig. 3.2, Callister 6e. (Courtesy P.M. Anderson) • Close packed directions are cube diagonals. --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ATOMIC PACKING FACTOR: BCC Adapted from Fig. 3.2, Callister 6e. • APF for a body-centered cubic structure = p3/8 = 0.68
FACE CENTERED CUBIC STRUCTURE (FCC) • Coordination # = 12 Adapted from Fig. 3.1(a), Callister 6e. (Courtesy P.M. Anderson) • Close packed directions are face diagonals. --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.
ATOMIC PACKING FACTOR: FCC Adapted from Fig. 3.1(a), Callister 6e. • APF for a body-centered cubic structure = p/(32) = 0.74 (best possible packing of identical spheres)
FCC STACKING SEQUENCE • FCC Unit Cell • ABCABC... Stacking Sequence • 2D Projection
HEXAGONAL CLOSE-PACKED STRUCTURE (HCP) Ideally, c/a = 1.633 for close packing However, in most metals, c/a ratio deviates from this value
HEXAGONAL CLOSE-PACKED STRUCTURE (HCP) • ABAB... Stacking Sequence • 3D Projection • 2D Projection Adapted from Fig. 3.3, Callister 6e. • Coordination # = 12 • APF = 0.74, for ideal c/a ratio of 1.633
STATES OF MATTER • The Four States of Matter • Four States • Solid • Liquid • Gas • Plasma
Kinetic Theory of Matter Matter is made up of particles which are in continual random motion.
STATES OF MATTERSOLIDS • Particles of solids are tightly packed, vibrating about a fixed position. • Solids have a definite shape and a definite volume. Heat
STATES OF MATTERLIQUID • Particles of liquids are tightly packed, but are far enough apart to slide over one another. • Liquids have an indefinite shape and a definite volume. Heat
STATES OF MATTERGAS • Particles of gases are very far apart and move freely. • Gases have an indefinite shape and an indefinite volume. Heat