1 / 31

Assessment of agricultural nitrogen balances for municipalities – Example Baden-Wuerttemberg

Assessment of agricultural nitrogen balances for municipalities – Example Baden-Wuerttemberg. martin.bach@agrar.uni-giessen.de. EEA Agri-water Expert meeting, Copenhagen, 21-22 Feb 2005. Usage of ‚nitrogen balance surplus‘.

marina
Download Presentation

Assessment of agricultural nitrogen balances for municipalities – Example Baden-Wuerttemberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Assessment of agricultural nitrogen balances for municipalities – Example Baden-Wuerttemberg martin.bach@agrar.uni-giessen.de EEA Agri-water Expert meeting, Copenhagen, 21-22 Feb 2005

  2. Usage of ‚nitrogen balance surplus‘ • EU, OECD: Agri-sustainability indicator - environmental pressures (water, atmosphere) - waste of resources  Effectiveness of policies: EU Nitrate Directive, national action programmes  Verification of supra-national treaties, e.g. OSPARCOM  Sustainability Strategy Program of the German Gouvernment: DUX-Indicator (‚German Environment Index‘) „Trend of the national nitrogen surplus“  Component of „National Gross Environmental Budget“ (UGR, Umwelt- ökonomische Gesamtrechnung), indicating the external costs of nitrogen losses into air, terrestrial ecosystems, surface waters, groundwater, sea  WFD implementation: source appointment, prediction of efficiency of reduction measures  Farm level: Optimization of N-management (tools e.g.: EMA in the UK; REPRO, QSL in Germany)

  3. Nitrogen soil surface surplus in the WFD context • „Best available indicator“ for water quality eutrophication by non-point source N lossese.g. Modelling approaches of EUROHARP models,especially MONERIS • WFD: ‚10 km² basin units‘ •  spatially differentiated calculation of N surplus • max resolution of ag-census based N balance • Germany: municipalities (EU LAU level 2)

  4. Ag-census based calculationof nitrogen soil surface surplus Problems  Lack of data (data secrecy)  Estimation of N mineral fertilizing quantities

  5. Missing data of the Agricultural Census Background Data secrecy policy: a statistical data won‘t be published when based on three or less individual values Replacement by estimated figures: missing data recalculted as the difference between „sum over a county“ and „sum over all muncipalities with published data“

  6. Missing data of the Agricultural Census - Crop acreage *) n = 1112 municipalities

  7. Missing data of the Agricultural Census - Livestock *) n = 1112 municipalities

  8. Estimation approch of nitrogen mineral fertilization „farmer‘s N fertilization scheme“: N plant demand= N mineral fertilization +N organic fertilizer*efficiency factor +other N supplyN plant demand:crop specific N demand for optimal harvest yield (table values) N organic fertilizing:N supply to the field with farm produced manure; N supply = N excretion of livestock minus volatilzation losses Efficiency factor: fraction of N in manure which is availabe for the field crop, according to farmers fertilization calculation Other N supply:N-fixation by legumes, secondary organic fertilizers N mineral fertilization = N plant demand–N organic fertilizer*efficiency factor –other N supply

  9. Estimation approach of nitrogen mineral fertilization „Validation“of the assessment: Estimated N mineral fertilizer amounts summed up over all crops and all counties in Germany  mineral fertilizer consumption of agriculture in total (census based) Best calibration with an efficiency factor = 36 %(average Germany 1998/2000).  Farmers do not accounted for 64 % of N in their manure (= potential losses when planning crop fertilization schemes) Figures (kg N/ha AA, average Germany 1998/2000): plant demand–organic fertilizer*efficiency factor –other supply = mineral fertilizer 144–53 *0,36 –15 = 110  used for calculation of mineral fertilizing of individual municipalities

  10. Nitrogen soil surface surpluskg N/ha AA Nitrogen surplus Results for Municipalities* Baden-Wuerttemberg 1999 *) EU LAU level 2, NUTS 5 no agriculture no data Lake Contance

  11. 200 1 : 1-Line 160 120 80 r² = 0,45 40 40 80 120 160 200 Quality check of nitrogen soil surface surplus results Comparison of Ag-Census based vs. empirical N budgets (mainly farm based data) Database: Literature review, 8 studies with together 32 municipalities (in 5 German states)(Bach et al.,1996) Nitrogen surplus based on Agricultural Census (kg N/ha AA) Nitrogen surplus acc. to empirical data (kg N/ha AA)

  12. <= 40 % 41 - 60 % 61 - 80 % 81 - 125 % 126 - 150 % > 150 % Baden-Wuerttemberg: NO3-conc. in aquifers measured vs. modelled Groundwater NO3-concentration Relation measurement / model (%) Source: J. Ruf, Environment Agency Baden-Wuerttemberg, 2004

  13. Resume •  Assessment of nitrogen balances for municipalities yields reasonable, quantitative figures with high spatially resolution •  Results are an operational tool for the WFD status reports (‚at risk‘ vs. ‘not at risk‘; source apportionment) • But: • Farm-gate balances are methodologically more precise and the results indicate the problem closer to its origin (farms with huge livestock density) • Outlook: Prediction of effectiveness (and efficiency) of nitrogen loss reduction measures in ag production systems needs process- oriented nitrogen models (e.g. SWAT, DNDC and others) - ‚nitrogen surplus‘ is not sufficient for this purpose.

  14. Thank you for your attention! You are a great audience!

  15. MONERIS (Behrendt et al., 1999)Results Baden-Wuerttemberg • Groundwater • Tile drainage • Erosion • Surface runoff • WWTP • Urbans areas • Atmospheric deposition Total Nitrogen emissions from: Source: Landesanstalt fuer Umwelt-schutz Baden-Württemberg, 2000

  16. Nitrogen balance of German agriculture 2000

  17. Landnutzung N-Saldo Hydrogeolog. Einheiten Boden (NAG), Niederschlag Bsp. Hessen: Auswertung WSG WSG-Zonen Zone I Zone II Zone III Zone IIIA Zone IIIB Wasserschutz- gebietszonen

  18. Schätzung NO3-Konz. in GW-Messstellen Regressionsansatz log (CNO3) = a0 + a1*Wald% + a2*Siedl% + a3*Grünl% + a4*(Acker%*N-Saldo) + a5*Tiefe + a6*SWS CNO3 = Mittlere Nitratkonz. des Rohwassers (mg NO3/l) Wald% = Anteil des Waldes an der Gesamtfläche (%) Grünl% = Anteil des Grünlands an der Gesamtfläche (%) Siedl% = Anteil der Siedlung an der Gesamtfläche (%) Acker%*N-Saldo = Produkt aus Ackerlandanteil und mittleremN-Bilanzüberschuss Tiefe = Mittlere Rohwasserentnahmetiefe (m) SWS = Geschätzte mittlere Sickerwasserspende (mm/a)

  19. Modellschritt r2 Korrigiertes r2 1. Wald% ,259 ,258 2. Grünl% ,341 ,339 3. Tiefe ,397 ,395 4. SWS ,418 ,415 Bsp. Hessen: Regressionsgleichung - Brunnen Alle Brunnen-Messstellen (Hessen gesamt), n = 811 log (CNO3) = 1,964 – 7,04E-03*Wald% – 4,15E-03*Grünl% – 2,43E-03*Tiefe – 6,19E-04*SWS 100 75 NO3-Konz. (mg/l) (gemessen) 50 25 0 0 25 50 75 100 NO3-Konz. (mg/l) (berechnet)

  20. SQS r2 Korrigiertes r2 Wald% ,697 ,694 SWS ,716 ,709 Bsp. Hessen: Regressionsgleichung - Quellen (‚SQS‘) Einheit: Nordhessisches Buntsandsteingebiet , n = 82 log (CNO3) = 1,889 – 8,57E-03*Wald% – 5,97E-04*SWS NO3-Konz. (mg/l) (gemessen) NO3-Konz. (mg/l) (berechnet)

  21. Bsp. Hessen: Ergebnisse (r²)

  22. Modellberechnung* Messung Grundwasserleiter Kluftgrundwasser Karst Sonstige Bsp. Baden-Württemberg: Berechnete Denitrifikationsraten *) Denitrifikationsrate = f{N-Überschuss LF, N-Deposition Wald, Nutzungsanteile, Sickerwassermenge, c(NO3)-GW gemess. } Quelle: J. Ruf, LfU Baden-Württemberg, 2003

  23. 150 150 100 100 50 50 0 0 1950 1960 1970 1980 1990 2000 Nitrogen balance surplus Germany 1950 to 2002* Nitrogen surplus (kg N/ha AA) National balance („farm gate“) Soil surface balance *) 2002: preliminary results

  24. 21 - 50 51 - 80 81 - 110 111 - 150 151 - 200 201 - 260 Nitrogen Surplus - Soil surface balance - of the AgriculturalArea (AA) 1999 - Germany, NUTS 3 level (counties) - kg N/ hectare AA

  25. 5 - 20 21 - 50 51 - 80 81 - 110 111 - 150 151 - 200 201 - 210 Nitrogen Surplus related to the total land area of the counties (all land uses*) 1999 - Germany, NUTS 3 level (counties) - kg N/ hectare total area *) AA: N soil surface surplus of the agricultural land; other uses (forest; urban and traffic areas): 5 kg N/ha N surplus

  26. N-Bilanzüberschuss Baden-Württemberg MONERIS Ergebnisse (Behrendt et al.) Überschuss Stickstoff-Flächenbilanz • <= 70 kg kg N/ha • 71 – 80 kg N/ha • 81 – 90 kg N/ha • 91 – 100 kg N/ha • 101 – 110 kg N/ha • 111 – 120 kg N/ha • 121 – 130 kg N/ha >130 kg N/ha Quelle: Landesanstalt für Umwelt-schutz Baden-Württemberg, 2000

  27. Nährstoffbilanzierung Baden-Württemberg - MONERIS Baden-Württemberg - Stickstoff-Flächenbilanzüberschuss Landwirtschaft (Bach / 1995) Stickstoff-Hoftorbilanzüberschuss Landwirtschaft (Zeddies / 2001) Quelle: LfU – Landesanstalt für Umweltschutz Baden-Württemberg – Sachgeb. 41.1

  28. Nährstoffbilanzierung Baden-Württemberg - MONERIS Baden-Württemberg - Gesamte spezifische Stickstoff-Emissionen nach MONERIS: • Grundwasser • Drainagen • Erosion • Abschwemmung • Kläranlagen • Urbane Flächen • Atmosphär. Deposition Quelle: LfU – Landesanstalt für Umweltschutz Baden-Württemberg– Sachgeb. 41.1

  29. Überschuss der Stickstoff- Flächenbilanz der Gemeinden in Hessen 1999 kg N / ha LF 20 - 40 41 - 60 61 - 80 81 - 100 101 - 115 115 - 130 Bach und Frede (2002)

  30. Usage of ‚nitrogen balance surplus‘ • EU, OECD: Agri-sustainability indicator - environmental pressures (water, atmosphere) - waste of resources  Effectiveness of policies: EU Nitrate Directive, national action programmes  Verification of supra-national treaties, e.g. OSPARCOM •  Sustainability Strategy Program of the German Gouvernment: DUX-Indicator (‚German Environment Index‘) „Trend of the national nitrogen surplus“ •  Component of „National Gross Environmental Budget“ (UGR, Umwelt- ökonomische Gesamtrechnung), indicating the external costs of nitrogen losses into air, terrestrial ecosystems, surface waters, groundwater, sea •  WFD implementation: source appointment, prediction of efficiency of reduction measures •  Farm level: Optimization of N-management (tools e.g.: EMA in the UK; REPRO, QSL in Germany)

More Related