1 / 20

控制與原理專題報告

控制與原理專題報告. A Systematic Method for Gain Selection of Robust PID Control for Nonlinear Plants of Second-Order Controller Canonical Form 指導教授:曾慶耀老師 學生:余帥廷 學號: 10067007. Introduction TDC and PID Relationship between discrete TDC and discrete PID control

maris
Download Presentation

控制與原理專題報告

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 控制與原理專題報告 A Systematic Method for Gain Selection of Robust PID Control for Nonlinear Plants of Second-Order Controller Canonical Form 指導教授:曾慶耀老師 學生:余帥廷 學號:10067007

  2. Introduction • TDC and PID • Relationship between discrete TDC and discrete PID control • Systematic method for gain selection of PID control • Experiments • Conclusion

  3. Introduction • 今天,超過 90%的實際控制系統使用PID控制。而機器人的PID控制器的研究可分為三類: • 第一類研究: PID增益調整方法的研究,透過智能控制,如模糊控制,神經網絡,或基因方法。 • 第二類研究:側重於PID增益選擇的方法,透過使用其他控制計劃,如最佳控制。 • 第三類研究:對PID增益選擇的方法直接使用Lyapunov的穩定性分析。 • 上敘的PID控制器在機器人的研究,往往是非常複雜的,需要精確的plant模型。 • 而我們提出了一個系統化的方法來選擇一個離散 PID控制器的增益,可以有力控制非線性多輸入多輸出(MIMO)的二階控制器的形式。 • 利用 PID增益和TDC的參數之間關係選擇 PID增益適用於非線性與不準確的模型。

  4. TDC and PID • Plant: • TDC: Time delay control 為了消除未知非線性函數 f

  5. Discrete TDC: λ is too small and sampling period L Discrete PID : For plant(1) , the PID is expressed in a continuous time domain as: 取discrete

  6. Relationship between discrete TDC and discrete PID control Relationship1:

  7. Systematic method for gain selection of PID control • Step1: Select a sampling period L as small as possible. • Step2: Specify KD and KP by considering desired closed-loop eigenvalues. • Step3: By using KD and KP ,obtain TI , TD and K by relationship1.

  8. Experiments • The system used in the experiment is a six-DOF PUMA-type robot manipulator having maximum payload of 5 kg, Faraman AC2, made by SAMSUMG Company.

  9. Selection of PID gains for Faraman AC2 • A discrete PID controller for this robot manipulator : • Step1: set of L=0.001(s) • Step2: set of ζ=1, ωn=10 that is, KD =20.I6, KP =100.I6

  10. Step3:TI ,TD and K by relationship1

  11. Set of (1) (2)

  12. Conclusion • 由實驗得知,一個有系統化選擇PID增益的方法有效的適用於非線性系統.這種方法比傳統方法來的要簡單又有效的調整PID增益透過離散 PID與離散 TDC的關係。 • 這種方法包含了獨立的調整參數的設置,遠少於傳統方法對於PID增益的選擇。 • 離散 PID 與離散 TDC 跑出來的結果相當近似,都有不錯的結果。

  13. REFERENCES • [1] Y. Lin, K. H. Ang, and G. C. Y. Chong, “Patents, software, and hardware for PID control,” IEEE Control Syst. Mag., vol. 26, no. 1, pp.42–54, Feb. 2006. • [2] PID 2006, IEEE Contr. Syst. Mag., vol. 26, no. 1, Feb. 2006. • [3] W. Li, X. G. Chang, F. M. Wahl, and J. Farrell, “Tracking control of a manipulator under uncertainty by fuzzy P+ID controller,” Fuzzy Sets Syst., vol. 122, no. 1, pp. 125–137, 2001. • [4] I. Cervantes and J. Alvarez-Ramirez, “On the PID tracking control of robot manipulators,” Syst. Control Lett., vol. 42, no. 1, pp. 37–46, 2001. • [5] H. B. Kazemian, “The SOF-PID controller for the control of a MIMO robot arm,” IEEE Trans. Fuzzy Syst., vol. 10, no. 4, pp. 523–532, Apr.2002. • [6] W. Li, X. G. Chang, J. Farrell, and F. M.Wahl, “Design of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 938–945,Dec. 2001. • [7] Y. L. Sun and M. J. Er, “Hybrid fuzzy control of robotics systems,” IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp. 755–765, Dec. 2004. • [8] S. Yildirim, M. F. Sukkar, R. Demirci, and V. Aslantas, “Design of adaptive NNs-robust-PID controller for a robot control,” in Proc. IEEE Int. Symp. Intell. Control, Dearborn, MI, 1996, pp. 508–513. • [9] D. P. Kwok and F. Sheng, “Genetic algorithm and simulated annealing for optimal robot arm PID control,” in Proc. 1st IEEE Conf. Evolutionary Computation, Orlando, FL, 1994, pp. 707–713. • [10] J. Park and W. K. Chung, “Analytic nonlinear 􀀀 inverse-optimal control for euler-lagrange system,” IEEE Trans. Robot. Autom., vol. 16, no. 6, pp. 847–854, Dec. 2000. • [11] Y. Choi and W. K. Chung, “Performance limitation and autotuning of inverse optimal PID controller for lagrangian systems,” ASME J. Dynam. Syst. Meas. Control, vol. 127, no. 2, pp. 240–248, 2005. • [12] J. Park and W. Chung, “Design of a robust 􀀀 PID control for industrial manipulators,” ASME J. Dynam. Syst. Meas. Control, vol. 122, no.4, pp. 803–812, 2000. • [13] E. Eriksson and J.Wikander, “Robust PID design of flexible manipulators through pole assignment,” in Proc. 7th Int. Workshop Adv. Motion Control, Maribor, Slovenia, 2002, pp. 420–425. • [14] J. Alvarez-Ramirez, I. Cervantes, and R. Bautista, “Robust PID control for robots manipulators with elastic joints,” in Proc. IEEE Int. Conf. Control Appl., Mexico City, Mexico, 2001, pp. 542–547. • [15] K. J. Åströn and T. Hägglund, Automatic Tuning of PID Controls.Triangle Park, NC: Instrument Society of America, 1988. • [16] G. P. Liu and S. Daley, “Optimal-tuning PID control for industrial systems,”Control Eng. Pract., vol. 9, no. 11, pp. 1185–1194, 2001. • [17] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 3rd ed. Boston, MA: Addison-Wesley, 1994. • [18] K. Youcef-Toumi and O. Ito, “A time delay controller for systems with unknown dynamics,” ASME, J. Dynam. Syst. Meas. Control, vol. 112,no. 1, pp. 133–142, 1990. • [19] K. Youcef-Toumi and S.-T.Wu, “Input/output linearization using time delay control,” ASME, J. Dynam. Syst. Meas. Control, vol. 114, no. 2,pp. 10–19, 1992. • [20] T. C. Steve Hsia, “A newtechnique for robust control of servo systems,”IEEE Trans. Ind. Electron., vol. 36, no. 1, pp. 1–7, Feb. 1989. • [21] T. C. Steve Hsia, T. A. Lasky, and Z. Guo, “Robust independent jointcontroller design for industrial robot manipulators,” IEEE Trans. Ind.Electron., vol. 38, no. 1, pp. 21–25, Feb. 1991. • [22] K. Youcef-Toumi and C. C. Shortlidge, “Control of robot manipulator using time delay,” in Proc. IEEE Int. Conf. Robot. Autom., Sacramento,CA, 1991, pp. 2391–2395. • [23] T. C. Hsia and L. S. Gao, “Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers,” in Proc. IEEE Int. Conf. Robot. Autom., OH, 1990, pp. 2070–2075. • [24] S. Jung, T. C. Hsia, and R. G. Bonitz, “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Trans. Control Syst. Technol., vol. 12, no. 3, pp. 474–483, May 2004. • [25] P. H. Chang, B. S. Park, and K. C. Park, “An experimental study on improving hybrid position/force control of a robot using time delay control,” Mechatron., vol. 6, no. 8, pp. 915–931, 1996. • [26] K. Youcef-Toumi and S. Reddy, “Dynamic analysis and control of high speed and high precision active magnetic bearing,” ASME J. Dynam.Syst. Meas. Control, vol. 114, no. 4, pp. 623–632, 1992. • [27] P. H. Chang, S. H. Park, and J. H. Lee, “A reduced order time delay control highly simplified brushless DC motor,” ASME J. Dynam. Syst. Meas. Control, vol. 121, no. 3, pp. 556–560, 1999. • [28] P. H. Chang and S. J. Lee, “A straight-line motion tracking controlof hydraulic excavator system,” Int. J. Mechatron., vol. 12, no. 1, pp.119–138, 2002. • [29] P. H. Chang and S. U. Lee, “Control of a heavy-duty robotic excavator using time delay control with integral sliding surface,” Control Eng.Pract., vol. 10, no. 7, pp. 697–711, 2002. • [30] J. Y. Park and P. H. Chang, “Vibration control of a telescopic handler using time delay control and a commandless input shaping technique,”Control Eng. Pract., vol. 12, no. 6, pp. 769–780, 2004. • [31] H. S. Jeong and C. W. Lee, “Time delay control with state feedback for azimuth motion of the frictionless positioning device,” IEEE Trans.Mechatron., vol. 2, no. 3, pp. 161–168, Jun. 1997. • [32] K.-H. Kim and M.-J. Youn, “A simple and robust digital current control technique of a PMsynchronous motor using time delay control approach,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 72–81, Jan.2001. • [33] J. H. Jung, P.-H. Chang, and O.-S. Kwon, “A new stability analysis of time delay control for input/output linearizable plants,” in Proc. Amer.Control Conf., Boston, MA, 2004, pp. 4972–4979. • [34] P. H. Chang and S. H. Park, “On improving time-delay control under certain hard nonlinearities,” Mechatron., vol. 13, no. 4, pp. 393–412,2003. • [35] G. R. Cho, P. H. Chang, and S. H. Park, “Robust trajectory control of robot manipulators using time delay estimation and internal model concept,”in Proc. 44th IEEE Conf. Decision Control Eur. Control Conf., • Seville, Spain, 2005, pp. 3199–3206. • [36] C. J. Li, “A new method of dynamics for robot manipulators,” IEEE Trans. Syst. Man Cybern., vol. 18, no. 1, pp. 105–114, Jan./Feb. 1988.

  14. THE END

More Related