1 / 37

Solar Fusion Prozesses

Solar Fusion Prozesses. H. Bethe. W. Fowler. pp - 1. pp -2. pp -3. Solare n Spektrum und Experimente. Homestake. Kamiokande, SK. SNO. Gallex, Sage. The Homestake Experiment. Das Pionierexperiment: Homestake. Neutrino Detektion 37 Cl + n e 37 Ar + e threshold energy 814 keV

Download Presentation

Solar Fusion Prozesses

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solar Fusion Prozesses H. Bethe W. Fowler pp - 1 pp -2 pp -3

  2. Solare n Spektrum und Experimente Homestake Kamiokande, SK SNO Gallex, Sage

  3. The Homestake Experiment Das Pionierexperiment: Homestake Neutrino Detektion 37Cl + ne37Ar + e threshold energy 814 keV target 615 t Perchlorethylen exposition to solar neutrinos ~ 60 days extraction of Ar - atoms Detection of Ar decay (T1/2 = 35 days) Ray Davis, 1966 Noble price 2002

  4. Ergebnis Homestake Chlor Experiment Empfindlich auf 7-Be und hauptsächlich auf 8-B Neutrinos Resultat: 2.56 +_ 0.23 SNU Sonnenmodell: 7.6 + 1.3 - 1.1 SNU Beginn des „Solaren Neutrino Problems“ ! Dakota (USA)

  5. SuperKamiokande • dimensions: • 41.4 m (hight) • 39.3 m (diameter) • water Cherenkov Detector (~ 50 kton high purity water) • solar-n detection by neutrino – electron scattering • Energy threshold ~ 5 MeV (sensitiv to 8B - n)

  6. Auch SuperK detects only 45 % of expected events (this is only a bit more than Homestake (Davis)) Ratenvariation übers Jahr Energie Spektrum Keine Abweichung von der erwarteten Form des ß-Spektrums

  7. Gallex & GNO Integral detection of solar all solar neutrinos ! 71Ga + ne -> 71Ge + e ~5 decays per extraction

  8. Situation nach GALLEX (~ 20 Jahre nach Homestake) Hinweis auf nicht standard Eigenschaften der Neutrinos Theoretische Vorhersagen

  9. This was the first evidence for non standard neutrino properties(neutrino decay, oscillation..? )

  10. Hypothesis: Neutrino Oscillation ((B. Pontecorvo) Condition 1) Eigenvalues of weak interaction # mass eigenvalues 2) Neutrinos are massive ν(e) = ν(1)cos (θ) + ν(2) sin(θ) ν(μ) = ν(1)-sin (θ) + ν(2) cos(θ) Time development |νe(t) > = |ν1(0) > exp (-iE1 t ) + |ν2 (0) > exp (–i E2 t) with Ei ²= m1² + p1² und Δ² = m²2 – m²1 P ν(e) = 1- sin² 2θ sin² (1,27Δ²/E²(ν))

  11. SNO: Sudbury Neutrino Observatory • geladene Stromwechselwirkung (cc) ne + D -> p + p + e • neutrale Stromwechselwirkung (nc) nx+ D ->nx + p + n • Elektronstreuung (cc + nc) nx + e ->nx + e • nc-events ~ 30 / d • es-events ~3 / d • cc-events ~ 30 / d (SSM)

  12. Energie- spektrum Richtungsverteilung Räumliche Verteilung im Detektor

  13. Sonnen-n ändern ihren Flavour!(sie verwandeln sich auf dem Weg zur Erde vom e-Typ in den m, oder t-Typ) Insgesamt kommen genau so viele Neutrinos an wie vorausgesagt!

  14. Neutrino Flavour Transition prooved

  15. verzögertes event: 180μsec promptes event: Ev – 0.77 MeV (n Spektroskopie) Detektion von Reaktorneutrinos Ev > 1.8 MeV

  16. Search for neutrino oszillations, solar neutrino astronomy at low energies Phys. Rev. Lett. 90 (2003) 021802 Experiment at ILL Gösgen Borexino Bugey ? ? Gallium Solar neutrinos 1.5 x 1011

  17. Oscillation of Neutrinos from the Atmosphere Superkamiokande

  18. Survival probability: 0 3 2 1 L in Losz Neutrino Oscillations

  19. L ≈ 20 km atmosphericneutrinos:Ev ~ GeV L ≈ 13000 km Oscillations and Atmospheric Neutrinos Pion production and subsequent decays (incl. muon)

  20. Atmospheric Neutrinos and SuperKamiokande 50 kt Water Cherenkov Detector Charged current reactions nm + N ->m + N` and ne + N -> e + N`

  21. SuperKamiokande (Japan) • ein Detektor mit ca. 50 kton Reinstwasser • atmosphärische und solare Neutrinos • atm.: CC Wechselwirkung

  22. Particle ID and the number of Cherenkov rings ne + N  e + N’ + (X) Category 1: fully contained events, 1 ring Here: Electron like event ne + N  e+ N’ + (X)

  23. nm+ N m + N’ + (X) Category 1: fully contained events, 1 ring Here: Muon like event

  24. nm + N  m+ N’ + p + (X) Fully contained events, multiple rings Here: Muon event

  25. Multi-ring event

  26. Muon 480 MeV

  27. Electron 0.7 GeV

  28. Muon 1 GeV

  29. Through going muon

  30. zenith angle distributions null oscillation best fit with oscillation data

  31. Muon events Electron events νμ νe m e No-oscillation Oscillation Up going Up going Neutrinos

  32. Result atmospheric Neutrino-Oscillations • Confirmed by • MACRO (Gran Sasso) • Soudan (USA) • K2K accelerator long baseline (250 km) experiment • MINOS (USA) acc. exp. in 2006 Best fit:m2atm = 2.5×10-3 eV2 sin22θatm = 1.0

  33. What do we know today about neutrino oscillation • ne<-> nm , ntsolar neutrinos • non maximal mixingund • Dm2 ~ 10-4 eV2 • nm<-> ntatmospheric neutrinos • large mixing ( close to maximal) • Dm2~ 2.5 x 10-3 eV2 • ne

  34. Parametrization of Neutrinomixing • Neutrino-mixing matrix: • 3 mixing angles: θ12, θ23, θ13 • 1 CP-violating Dirac-Phase: δ θsol θ13, δ θatm • In addition, if Majorana neutrinos: • 2 CP-violating Majorana-phases

More Related