1 / 37

Solving for X: One-Step and Two-Step Equations

This presentation guides you through solving one- and two-step equations. Learn essential operations to find the value of the variable X. Each step explained with examples and interactive quizzes.

marius
Download Presentation

Solving for X: One-Step and Two-Step Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solving for X This presentation will guide you through solving a one-step or two-step equation.The buttons below will help you move through this lesson. At any time, use the “left arrow” button to go back to the previous slide or the “right arrow” to go to the next slide. Use the “home” button to come back to the beginning page. “Left Arrow” “Home” “Right Arrow”

  2. Solving for X First choose your starting level. • One step equations • Two step equations

  3. Solving for XHow to solve a one – step equation • Object: To solve an equation, you must get the variable by itself to determine it’s value.

  4. To solve for x, you must “undo” the four operations that we use in everyday mathematics. Those operations include addition, subtraction, multiplication, and division.

  5. We must also keep the equation balanced. What we do to one side of the equation, we have to do to the other side of the equation. More specifically, the operation that we perform on the left side of the equation we have to perform on the right side of the equation.

  6. An example of addition in an equation is X + 4 = 243. Here we are adding 4 to an unknown value and it equals 243. To undo addition, we must use subtraction. X + 4 – 4 = 243 – 4 In this example, x is equal to 239.

  7. An example of subtraction in an equation is X – 6 = 33. Here we are subtracting 6 from an unknown value and it equals 33. To undo subtraction, we must use addition. X – 6 + 6 = 33 + 6 In this example, x is equal to 39.

  8. An example of multiplication in an equation is 3X = 6. Here we are multiplying 3 by an unknown value and it equals 6. To undo multiplication, we must use division. 3X / 3 = 6 / 3 In this example, x is equal to 2.

  9. An example of division in an equation is X / 4 = 12. Here we are dividing an unknown value by 4 and it equals 12. To undo division, we must use multiplication. X / 4 * 4 = 12 * 4 In this example, x is equal to 48.

  10. Let’s try a few examples! X + 16 = 24 In this example, to solve for X we need to: A. Add 16 to both sides. B. Subtract 16 from both sides. C. Multiply both sides by 16. D. Divide both sides by 16.

  11. Not quite! Here’s why: X + 16 = 24 To “undo” addition, we must subtract 16 from both sides of the equation like this: X + 16 – 16 = 24 –16 Click here to go back to the quiz.

  12. Way to go! You’re right! To “undo” addition, we must subtract from both sides of the equation. X + 16 – 16 = 24 – 16

  13. Try another one! X – 12 = 36 In this example, to solve for X we need to: A. Add 12 to both sides. B. Subtract 12 from both sides. C. Multiply both sides by 12. D. Divide both sides by 12.

  14. Not quite! Here’s why: X – 12 = 36 To “undo” addition, we must subtract 12 from both sides of the equation like this: X – 12 + 12 = 36 + 12 Click here to go back to the quiz.

  15. Way to go! You’re right! To “undo” addition, we must add to both sides of the equation. X – 12 + 12 = 36 + 12

  16. Try another one! 4X = 32 In this example, to solve for X we need to: A. Add 4 to both sides. B. Subtract 4 from both sides. C. Multiply both sides by 4. D. Divide both sides by 4.

  17. Not quite! Here’s why: 4X = 32 To “undo” multiplication, we must divide both sides of the equation by 4 like this: 4X / 4 = 32 / 4 Click here to go back to the quiz.

  18. Way to go! You’re right! To “undo” multiplication, we must divide both sides of the equation by 4. 4X / 4 = 32 / 4

  19. Try another one! X / 5 = 7 In this example, to solve for X we need to: A. Add 5 to both sides. B. Subtract 5 from both sides. C. Multiply both sides by 5. D. Divide both sides by 5.

  20. Not quite! Here’s why: X / 5 = 7 To “undo” division, we must multiply both sides of the equation by 5 like this: X / 5 * 5 = 7 * 5 Click here to go back to the quiz.

  21. Way to go! You’re right! To “undo” division, we must multiply both sides of the equation by 5. X / 5 * 5 = 7 * 5 You’ve done great! Now it’s time to try two-step equations. To go on, click on the right arrow. To go back to the beginning, click on the home button.

  22. Solving for XHow to solve a two – step equation • Object: To solve a two-step equation, you must get the variable by itself to determine it’s value. However, getting the variable by itself requires one more step than the previous equations.

  23. First, you must move any number that does not have a variable to the other side of the equal sign. You do this by “undoing” addition or subtraction. • Second, you follow the directions that we learned before to get the variable by itself.

  24. An example of a two step equation is 3X + 5 = 17. Here we are adding 5 to some number multiplied by three and it equals 17. Our first step is to undo addition by subtracting 5 on both sides of the equation. 3X + 5 – 5 = 17 – 5 This simplifies to 3X = 12. Next we need to undo multiplication by dividing both sides by 3. 3X / 3 = 12 / 3 In this example x is equal to 4.

  25. Another example of a two step equation is 5X – 4 = 26. Here we are subtracting 4 from some number multiplied by five and it equals 26. Our first step is to undo subtraction by adding 4 to both sides of the equation. 5X – 4 + 4 = 26 + 4 This simplifies to 5X = 30. Next we need to undo multiplication by dividing both sides by 5. 5X / 5 = 30 / 5 In this example x is equal to 6.

  26. Let’s try a few examples! 4X + 16 = 64 In this example, the first step to solve for X is: A. Add 16 to both sides. B. Subtract 16 from both sides. C. Multiply both sides by 4. D. Divide both sides by 4.

  27. Not quite! Here’s why: 4X + 16 = 64 First, you must move any number that does not have a variable to the other side of the equal sign. You do this by subtracting 16 from both sides of the equation like this: 4X + 16 – 16 = 64 – 16 Click here to go back to the quiz.

  28. Way to go! You’re right! First, you must move any number that does not have a variable to the other side of the equal sign. You do this by subtracting 16 from both sides of the equation like this: 4X + 16 – 16 = 64 – 16

  29. Let’s work on the second step.. 4X + 16 – 16 = 64 – 16 In this example, the second step to solve for X is: A. Add 16 to both sides. B. Subtract 16 from both sides. C. Multiply both sides by 4. D. Divide both sides by 4.

  30. Not quite! Here’s why: 4X + 16 – 16 = 64 – 16 This simplifies to 4x = 48. Next we need to undo multiplication by dividing both sides by 4. 4X / 4 = 48 / 4 Click here to go back to the quiz.

  31. Way to go! You’re right!Next we need to undo multiplication by dividing both sides by 4. 4X / 4 = 48 / 4 In this example, x is equal to 12.

  32. Try another one! 6X – 8 = 58 In this example, the first step to solve for X is: A. Add 8 to both sides. B. Subtract 8 from both sides. C. Multiply both sides by 6. D. Divide both sides by 6.

  33. Not quite! Here’s why: 6X – 8 = 58 First, you must move any number that does not have a variable to the other side of the equal sign. You do this by adding 8 to both sides of the equation like this: 6X – 8 + 8 = 58 + 8 Click here to go back to the quiz

  34. Way to go! You’re right! First, you must move any number that does not have a variable to the other side of the equal sign. You do this by adding 8 to both sides of the equation like this: 6X – 8 + 8 = 58 + 8

  35. Let’s work on the second step.. 6X – 8 + 8 = 58 + 8 In this example, the second step to solve for X is: A. Add 8 to both sides. B. Subtract 8 from both sides. C. Multiply both sides by 6. D. Divide both sides by 6.

  36. Not quite! Here’s why: 6X – 8 + 8 = 58 + 8 This simplifies to 6x = 66. Next we need to undo multiplication by dividing both sides by 6. 6X / 6 = 66 / 6 Click here to go back to the quiz.

  37. Way to go! You’re right!Next we need to undo multiplication by dividing both sides by 6. 6X / 6 = 66 / 6 In this example, x is equal to 11.

More Related