1 / 13

Amplifier Class & Bias

Chelmsford Amateur Radio Society Advanced Course Transmitters Part-3 - Power Amplifiers & Interference. I C. I C. Distorted Output. Output. V BE. V BE. Input signal normal bias voltage. Input signal low bias voltage. Amplifier Class & Bias.

marja
Download Presentation

Amplifier Class & Bias

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chelmsford Amateur Radio Society Advanced CourseTransmittersPart-3 - Power Amplifiers & Interference

  2. IC IC Distorted Output Output VBE VBE Input signal normal bias voltage Input signal low bias voltage Amplifier Class & Bias • Class-A, B, AB and C are defined by the bias and operating region of the transistor

  3. Amplifier Classes • Class-ABiased well on for high fidelity but also results in low efficiency and high heat dissipation on poweramps • Class-BGives only only half the waveform, so usually used in Push-Pull configurations. Fairly efficient, but can get crossover distortion • Class-ABA variation of Class-B with but biased on each transistor to conduct for slightly more than half cycle for better fidelity • Class-CNonlinear but efficient - high distortion needs filtering - Used for FM and in GSM mobile phones • Other Classes exist but are out of scope: D, E, F, G, H, S etc

  4. Transmitter Amplifiers • Modulation schemes which carry information in their amplitude require good linearity in all stages, or else distortion will occur • AM & SSB require linear amplification eg Class-A • An FM-only transmitter does not need to be linear, so a Class-C amplifier can be used which is more efficient • CW is only on or off, so Class-C is also fine for this. • Data Modulation: Frequency or Phase-shift keyed schemes are like FM and could use Class-C. If Amplitude changes then a linear amplifier is needed • Non-linear amps need filtering to avoid harmonics or bandwidth spread

  5. Poweramp Circuits • Modulation schemes which carry information in their amplitude require good linearity in all stages, or else distortion will occur • Any form of Amplitude Modulation will require that amplifiers need filtering to avoid harmonics or bandwidth spread

  6. Automatic Level Control • Splatter, distortion and damage can occur if a Poweramp is overdriven • Heat dissipation and output power varies with nature of drive and modulation. For example, a long SSTV transmission has a higher duty cycle than SSB - check if rating is for continuous operation • Power in License is PEP so may need to back-off transmissions on SSB unless speech processors are used to average out voice peaks • Automatic Level Control,ALC, can display the need to reduce the drive level, or do so automatically. • External PAs can link ALC back to the transceiver. ALC is easier to integrate on internal Poweramps • Excess SWR detection is often also built in as a protection measure

  7. Valve Poweramps • Older amplifiers and some very high power amplifiers still use Valves • Valve Operation is similar to a FET, except heat causes electrons to be initially emitted - Thermionic Emission • The electric field on the Valve Grid controls electron flow – similar to the Gate in FET • The equivalence to a FET is that in a Triode… Drain=Anode, Grid=Gate, Source=Cathode

  8. Valve Poweramp Benefits • Advances in technology are encroaching on Valves, although they continue to be developed for specialist purposes • Advantages • Readily handle high powers at higher frequencies - VHF, UHF upwards • Robust in the face of mismatches compared to transistors • Disadvantages • Need high voltages in amplifier and PSU - SAFETY ISSUE • Physically fragile and prone to vibration (including from cooling fans) • Deteriorate with age

  9. Transmitter Interference • Interference can be in band, adjacent channel or out of band • In band/Adjacent can come from key clicks, drift chirp • Spurii from synthesisers, mixers, and multipliers can also be causes • Harmonics and Intermods etc can cause interference on other bands

  10. Modulation Terms • FM Deviation refers to the max shift away from the nominal carrier • Narrow vs Wideband FM. The FM section 2m band has been re-channelised to 12.5kHz spacing compared to 25kHz on most of 70cms • Peak Deviation is 2.5kHz for 12.5kHz channel spacing and 4.8-5kHz for a 25kHz spacing. • Wide deviation on narrowband receivers will interfere in adjacent channels. It will also get clipped by IF filters/discriminators and result in choppy received audio

  11. Synthesiser Spurii • Phase comparator time constant and frequency has a degree of uncertainty, which manifests itself as phase noise • Situation is not helped if small frequency step resolution, but rapid tuning are both desired • Synthesisers must detect ‘out of lock’ and inhibit transmission • Modern synthesisers use dual loops to get small step sizes • DDS steps would also show up as sidebands/jitter unless filtered out

  12. Keyer /Data CW Signal CW Modulation • Fast Edges can give key clicks or cause overshoot/ringing in the Poweramp • Morse, also called CW, is the simplest form of digital mode.

  13. Keying stage Power amplifier Low-pass filter Key CW Key Click Filter • Block diagram of CW transmitter • Modified Keying stage switches RF • Slower rise and fall time of RF envelope will avoid excess bandwidth RF oscillator

More Related