1 / 25

Union-find

Union-find. Union-find. Maintain a collection of disjoint sets under the following two operations S 3 = Union(S 1 ,S 2 ) Find(x) : returns the set containing x. Union-find. We assume there are n fixed elements We start with n sets each containing a single element

marjories
Download Presentation

Union-find

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Union-find

  2. Union-find • Maintain a collection of disjoint sets under the following two operations • S3 =Union(S1,S2) • Find(x) : returns the set containing x

  3. Union-find • We assume there are n fixed elements • We start with n sets each containing a single element • Each element has a pointer to its representation in the set containing it

  4. S1 = {e1} S2 = {e2} S3={e3} S4={e4} …… A = Union(S3,S4) S1 = {e1} A= {e2,e3} S4={e4} …… Find(e2)  A B = Union(A,S7) S1 = {e1} B= {e2,e3,e7} S4={e4} ……

  5. Why ? • Suppose we want to maintain an equivalence relation: b y v z s t a x y ≡ z

  6. y, z b v s t a x y ≡ s

  7. y, z, s b v t a x y ≡ s

  8. Queries • Equivalent?(y,a)

  9. Can solve this with union-find • Each equivalence class is a set • y ≡ s  union(find(y),find(s)) • Equivalent?(y,a)  return yes if find(y) = find(a)

  10. Representation • Represent each set by a tree, each node represents an item, the root also represents the set B e2 e7 e3

  11. Concretely B e2 e7 e3

  12. Find(e10) C e6 e9 e11 e10 e8

  13. Find(e10) C e6 e9 e11 e10 e8 Find(x) while (x.parent ≠null) do x ← x.parent return (x)

  14. D=Union(B,C) e6 C e9 e2 B e11 e7 e3 e10 e8

  15. D=Union(B,C) e6 C e9 e2 B e11 e7 e3 e10 e8

  16. D=Union(B,C) e6 D e9 e2 B e11 e7 e3 e10 e8

  17. D=Union(B,C) e2 B e6 C e7 e3 e9 e11 e10 e8

  18. D=Union(B,C) e2 B e6 C e7 e3 e9 e11 e10 e8

  19. D=Union(B,C) e2 D e6 C e7 e3 e9 e11 e10 e8

  20. Link by size • For the find’s sake its better to hang the smaller on the larger

  21. D=Union(B,C) e6 5 C e2 3 B e9 e11 e7 e3 e10 e8 If (C.size > B.size) then B.Parent ← C; C.size = C.size + B.size return (C) Else C.parent ← B; B.size = B.size + C.size return (B)

  22. D=Union(B,C) D e6 8 C e2 3 B e9 e11 e7 e3 e10 e8 If (C.size > B.size) then B.Parent ← C; C.size = C.size + B.size return (C) Else C.parent ← B; B.size = B.size + C.size return (B)

  23. Analysis • Union: O(1) time • Find: O(log(n)) time • The depth of a tree is at most log(n)

  24. Proof By induction on the sequence of operations: For every x Depth(x) ≤ log |T(x)| x

  25. Path compression

More Related