290 likes | 305 Views
Silicon nitride based ceramics – Materials for extreme environments - Corrosion in molten FLiNaK. M. Hnatko , 1 P. Šajgalík, 1 Z. Lenčéš, 1 V. Petrušková , 1 M. Kašiarová, 2 R . Klement 2. 1 Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
E N D
Silicon nitride based ceramics – Materials for extreme environments - Corrosion in molten FLiNaK M. Hnatko,1 P. Šajgalík,1 Z. Lenčéš,1 V. Petrušková,1 M. Kašiarová,2R. Klement2 1 Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia 2 Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia
Motivation Application of molten inorganic materials: • FLiNaK: 46.5 mol% LiF, 11.5 % NaF, 42% KF • Aluminium industry • Electrolite for cathodic deposition of TiB2, ZrB2, MSix, Mo, Nb • Heat transfer applications (good l, high Cp, low h, high Tb) • Solar thermal energy storage • Nuclear energy (primary reactor coolant) • Molten salt reactors (fuel FLiNaK+ZrF4+UF4, coolant)
Motivation Advanced High Temperature Reactor & Hydrogen production Forsberg C. W., Developments in Molten Salt and Liquid-Salt-Cooled Reactors, Proceedings of ICAPP 06, Reno, Nevada USA, June 4-8, 2006, paper6292.
Motivation FLiNaK Disadvantage: highly corrosive medium Superalloys: Hastelloy-N,Hastelloy-X, Haynes-230, Inconel-617, Incoloy-800H • Ceramics: • containers of molten salts • sensors in molten salt baths
Experimental SiAlON:Si6-zAlzOzN8-z, z = 4 SNY: Si3N4+ 5 wt% Y2O3 1700C/1h/30 MPa 600 rpm/2h IPA >25 mm
XRD analysis b-Si3N4
XRD analysis from unit cell: z = 3.6
SNY SiAlON Microstructural analysis 1 mm 2 mm
Experimental Sample holder Test bars FLiNaK: LiF 46.5% NaF 11.5% KF 42.0% samples FLiNaK Conditions: 1 = 48 h 2 = 96 h 3 = 192 h T = 580 °C N2 atmosphere (3x4x60 mm)
N2 N2 Experimental set-up
FLiNaK SiAlON t = 0 min T = 25 C t = 0 min T = 580 C t = 10 min T = 580 C Wetting of SiAlON by FLiNaK
Results of corrosion test SiAlON-F SNY-F
Si3N4 - FLiNaK 48 h
48 h 96 h 20 mm 20 mm 192 h 10 mm
EDX and XRD analysis 2 Date: 22.3.2010 13:07:19 HV: 20,0 kV Puls th.: 7,24 kcps El AN Line unn. C norm. C Atom. C [mass %] [mass %] [At.%] -------------------------------------------- Si 14 K-series 43,24 37,46 33,13 N 7 K-series 25,11 21,76 38,59 Y 39 L-series 18,48 16,01 4,47 Au 79 M-series 11,54 10,00 1,26 O 8 K-series 8,20 7,10 11,03 F 9 K-series 4,86 4,21 5,50 C 6 K-series 3,01 2,61 5,40 K 19 K-series 0,72 0,62 0,40 Al 13 K-series 0,27 0,23 0,22 --------------------------------------------- Total:: 115,4 % a = 12 h = 30 mm
Cross section of samples after corrosion test 48 h surface 48 h surface 96 h 192 h surface
1 Date: 24.3.2010 8:00:044 HV: 20,0 kV El AN Line unn. C norm. C Atom. C [mass %] [mass %] [At.%] -------------------------------------------- Al 13 K-series 50,81 37,41 29,29 O 8 K-series 29,71 21,88 28,88 N 7 K-series 24,96 18,38 27,71 Si 14 K-series 21,69 15,97 12,01 Au 79 M-series 7,29 5,37 0,58 C 6 K-series 0,89 0,65 1,15 F 9 K-series 0,47 0,35 0,38 --------------------------------------------- Total:: 135,8 % 2 Date: 24.3.2010 8:01:055 HV: 20,0 kV El AN Line unn. C norm. C Atom. C [mass %] [mass %] [At.%] -------------------------------------------- Al 13 K-series 44,19 36,58 28,50 O 8 K-series 26,90 22,27 29,25 N 7 K-series 21,88 18,12 27,18 Si 14 K-series 16,79 13,90 10,40 Au 79 M-series 7,18 5,94 0,63 F 9 K-series 2,93 2,42 2,68 C 6 K-series 0,93 0,77 1,35 --------------------------------------------- Total:: 120,8 % EDX analysis SiAlON-F after 48 h
EDX analysis 1 Date: 30.3.2010 10:40:59 HV: 20,0 kV Puls th.: 6,33 kcps El AN Line unn. C norm. C Atom. C [mass %] [mass %] [At.%] -------------------------------------------- O 8 K-series 29,19 26,90 37,18 F 9 K-series 28,12 25,92 30,17 K 19 K-series 19,43 17,90 10,13 Al 13 K-series 12,34 11,37 9,32 Si 14 K-series 10,88 10,03 7,89 Au 79 M-series 5,43 5,01 0,56 C 6 K-series 2,46 2,27 4,17 Na 11 K-series 0,66 0,60 0,58 --------------------------------------------- Total:: 108,5 % Sample surface after 96h 3 Date: 30.3.2010 10:42:20 HV: 20,0 kV Puls th.: 6,96 kcps El AN Line unn. C norm. C Atom. C [mass %] [mass %] [At.%] -------------------------------------------- O 8 K-series 38,78 37,55 51,59 K 19 K-series 16,64 16,12 9,06 Al 13 K-series 15,92 15,42 12,56 Si 14 K-series 14,35 13,89 10,87 F 9 K-series 9,58 9,28 10,73 Au 79 M-series 5,40 5,23 0,58 C 6 K-series 2,59 2,51 4,60 --------------------------------------------- Total:: 103,3 %
XRD analysis of the surface layer a = 1 h = 3 mm a = 12 h = 30 mm
Bending strength of corroded SNY samples Si3N4 samples SiAlON samples
FLiNaK + K2NaAlF6+KAlSiO4 corrosion of GB & matrix phase (slow) Improvement of strength of SiALON samples after coorosion 48 h 96 h 192 h healing of surface defects? FLiNaK
FactSage 5.5 thermochemical software and databases Gas phases: SiF4, SiF3, SiF2, SiO K, Na, Li NaAlF4, LiAlF4, Na2AlF5, AF3, Li2AlF5 KF, LiF, NaF Liquid phases: KF, LiF, NaF K2O, Na2O, Li2O Solid phases: K3AlF6, K2Al12O19 KAlSiO4 Thermodynamic background 1 mol FLiNaK, 0.02 mol Si3N4, 0.04 AlN, 0.04 Al2O3 400-1300ºC, 0.1 MPaN2
YF3 (s,l) corrosion of GB phase (faster) Corrosion of SNY samples Si3N4+5 wt% Y2O3 FLiNaK SiF4(g)
Thermodynamic background Si3N4:FLiNaK= 1:10 400-1300ºC, 0.1 MPaN2
Thermodynamic background Si3N4:FLiNaK= 1:10, 400-1300ºC, 0.1 MPaN2 Si3N4(s) + 12 KF(l) = 3 SiF4(g) + 12 K(g) + 2 N2(g) Y2O3 + 6 KF = 2 YF3 + 3 K2O SiO2 + 4 KF = SiF4 + 2 K2O
Conclusions • both SNY and b-SiAlON ceramic materials have • a good corrosion resistance against FLiNaK • the corrosion of SNY proceeds preferentially through the GB • the corrosion of b-SiAlON is slower in FLiNaK a proceeds • across the bulk material • (the corrosion rate of matrix and GB phase is comparable) • both ceramics can be applied in the field of fluorine-based • molten salts (b-SiAlON has a better corrosion resistance)