530 likes | 733 Views
第六章 化学平衡. 引言 单向反应 所有的化学反应都可以认为是既能正向进行,亦能逆向进行; 但在有些情况下,逆向反应的程度是如此之小,以致可略去不计; 这种反应我们通常称之为 “单向反应” 。. 例如:. 常温下,将 2 份 H 2 与 1 份 O 2 的混合物用电火花引爆,就可转化为水。 此时用通常的实验方法无法检测到所剩余的氢和氧的数量。 但是当温度高达 1500 C 时,水蒸汽却可有相当程度分解为 O 2 和 H 2 。 即在通常条件下,氢气和氧气燃烧反应逆向进行的程度很小; 而在高温条件下,反应逆向进行的程度就相当明显。. 可逆反应.
E N D
引言 单向反应 • 所有的化学反应都可以认为是既能正向进行,亦能逆向进行; • 但在有些情况下,逆向反应的程度是如此之小,以致可略去不计; • 这种反应我们通常称之为“单向反应”。
例如: • 常温下,将 2 份 H2与 1 份 O2 的混合物用电火花引爆,就可转化为水。 • 此时用通常的实验方法无法检测到所剩余的氢和氧的数量。 • 但是当温度高达 1500C 时,水蒸汽却可有相当程度分解为 O2 和 H2。 • 即在通常条件下,氢气和氧气燃烧反应逆向进行的程度很小; • 而在高温条件下,反应逆向进行的程度就相当明显。
可逆反应 • 一定条件下,化学反应在正向和逆向均有一定程度的发生,反应物和生成物同时存在。 • 所有的可逆反应在进行一定时间以后均会达到化学平衡状态,这时在温度和压力不变的条件下,混合物的组成不随时间而改变。 • 从宏观上看,达到化学平衡时化学反应似乎已经停止,但实际上这种平衡是动态平衡,即正向反应和逆向反应的速度相等。
关注:化学反应限度 注意 • 可逆反应中的“可逆”,不是热力学意义上的可逆过程(即无限缓慢的准静态过程),而仅指反应物、产物转化方向的可逆性。 • 一定条件下,不同的化学反应能进行的程度很不相同;同一化学反应,在不同条件下,其进行的程度也可能有很大差异。
本章学习内容: 用热力学基本原理和规律来研究化学反应 -- 反应进行的方向 -- 达到平衡的条件 -- 平衡时物质的数量关系 -- 随条件的改变 学习重点: 化学势与平衡常数之间的关系
注意: 热力学平衡态性质,只由状态决定,与过程无关,受状态参量如温度和压力影响 • 不涉及反应动力学和速率,即反应进行的快慢和历程 • 一定条件下达到平衡,提高产率可以通过改变条件,与动力学无关
第一节 平衡条件和平衡常数 一、反应Gibbs自由能 • 在一定的温度和压力的条件下,自发变化的方向是向着Gibbs自由能减小的方向 • 计算反应混合物(反应物和产物的混合物)的Gibbs自由能,当Gibbs自由能达到最小时,反应即达到平衡,Gibbs自由能达到最小时反应混合物的组成即化学反应平衡的组成
一、反应Gibbs自由能 dD + eE fF + gG SB nB B = 0 反应进度 dG = - SdT + Vdp + SBmB dnB T,p一定 dG = SBmB dnB = SBmBnB dx
一、反应Gibbs自由能 T,p一定: dG = SBmB dnB = SBmBnB dx <0 正向 >0 逆向 =0 平衡 mB = mB (T, p, aB(x)) 反应Gibbs自由能DrGm不仅是T,p的函数,也与反应混合物的组成即活度有关,因而与反应进度有关
例如: A B 随着反应的进行,浓度发生变化,化学势也随之发生变化,反应总是沿着Gibbs自由能减小的方向进行,直到平衡
二、平衡常数 (一)气相反应 B = B(T, pB = p, B=1) + RTln(fB /p) = B (T, pB =p) + RTln(pB/p) (理想气体) DrGm= SBnB mB = SBnB B+ SBnBRTln(fB /p) = SBnB B+ RTln PB(fB /p)nB DrGm= DrGm+ RTlnQf 逸度商
二、平衡常数 (一)气相反应 DrGm= DrGm+ RTlnQf 平衡时:DrGm= 0, Qf =Kf热力学平衡常数(无量纲) DrGm= -RTlnKf 或 DrGm= -RTlnKp (理想) DrGm=-RTlnKp+ RTlnQp Kp>Qp DrGm < 0 正向 Kp<Qp DrGm > 0 逆向 Kp=Qp DrGm = 0 平衡 Kf或Kp又称标准平衡常数,只与T有关,与p无关
理想气体平衡常数的经验表示法(有量纲) aA + bB gG + hH 标准平衡常数: 产物与反应物计量系数之差 = ( g + h ) ( a + b)
压力平衡常数 • Kp = Kp(p) or Kp = Kp(p) Kp或Kc仍只与温度有关
pi = pxi • Kx = Kpp 或 Kx= Kp(p/p) • Kx既与T有关,又与p有关(除非= 0) 总结:KP = KP(p)=Kc(RT) = Kxp(理想气体)
非理想气体(高压反应)化学平衡 aA + bB gG + hH • 当气相反应是在高压下进行,气体不能被看作理想气体,标准平衡常数:
fi = pi i Kf = Kp K KP也与压力有关,只有Kf 只是温度的函数,一定温下为常数。
(二)溶液中的反应 1. 一般的非理想液态混合物 B = B*(T,p) + RTlnaB ≈ B(T,p) + RTlnaB DrGm= SBnB mB = SBnB B+ SBnBRTlnaB = SBnB B+ RTln PBaBnB DrGm= DrGm+ RTlnQa 活度商 平衡时:DrGm= 0, Qa =Ka DrGm= -RTlnKa
(二)溶液中的反应 2. 溶质间的化学反应 • i(T, P) =i* (T, P) + RTlnax, i (a x, i = xi x, i) • =i(T, P) + RTlnam, i (am, i =(mi/m)m,i) • = i(T, P) + RTlnac, i(ac, i = (ci/c)c, i) B ≈ B(T,p) + RTlnaB 通常活度不能用浓度代替,尤其电解质溶液,即使稀溶液,活度偏离浓度也很大 DrGm= DrGm+ RTlnQa 平衡时:DrGm= 0, Qa =Ka DrGm= -RTlnKa
(三)复相反应 平衡时 0=DrGm= SBnB mB = SBnB mB + SDnD mD = SBnB B + SBnBRTln(fB /p)+ SDnDRTlnaD = SBnBB+ RTln [PB(fB /p)nBPDaDnD] = DrGm+ RTlnQ 纯固体或纯液体活度为1 DrGm= SBnBB= -RTlnK 热力学平衡常数,或标准平衡常数,无量纲
例1:CaCO3 (s) ⇌ CaO (s) + CO2 (g) • K = f CO2 /ppCO2 /p 平衡时CO2 的分压称为CaCO3 分解反应的解离压力
例2:NH4HS (s) ⇌ NH3 (g) + H2S (g) • KP = pNH3 pH2S • 如果反应体系中预先没有其他(气体)物质,若在平衡时体系的总压力为p,则: pNH3 = pH2S = p/2, KP = p2 /4 • 该反应体系的总压力,为此分解反应的解离压力
例3: NH2COONH4 (s) ⇌ 2NH3 (g) + CO2 (g) KP = pNH32pCO2 • 反应体系没有其他物质,平衡时总压力为p,则: pNH3 = (2/3) p, pCO2 = (1/3) p KP = [(2/3) p]2 [(1/3) p] = (4/27) p3
例4. 将固体NH4HS放在25C的抽空容器中,由于NH4HS的解离,在达到平衡时,容器中的压力为500mmHg,如果将固体NH4HS 放入25C的已盛有H2S(其压力为300mmHg)的密闭容器中,则达到平衡时容器的总压力为若干? 固体NH4HS放入25C抽空容器中,平衡时, NH4HS (s) ⇌ NH3 (g)+ H2S (g) PNH3 = PH2S = ½ P = 250 mmHg KP = PNH3PH2S = 250×250 = 6.25×104 ( mmHg )2
NH4HS (s) ⇌ NH3 (g)+ H2S (g) y 300 + y • 现在容器中已先盛有300mmHg的H2S,设NH3的平衡分压为 ymmHg,则平衡时: PNH3 = y, PH2S = 300 + y KP = (300 + y)y = 62500 y = 142 mmHg • 平衡总压力: P = ( 300 + y ) + y = 584 mmHg
三、标准反应Gibbs自由能 • 反应Gibbs自由能DrGm= SBnB mB 一定T,p条件下,发生反应时,反应物与生成物混合在一起,具有某一浓度,反应混合物的Gibbs自由能随反应进度的变化率,与T,p和反应进行到某时刻时的浓度有关,决定反应自发进行的方向。
三、标准反应Gibbs自由能 • 标准反应Gibbs自由能DrGm = SBnB B 按化学反应方程式计量系数,标准态的反应物完全转化为标准态的产物,各组分都处于各自的标准态,不混合,Gibbs自由能的变化,也即产物和反应物均处于标准态时的化学势之差,与平衡常数直接联系,决定反应限度。
1. 与平衡常数关系: rGm=RTlnK • rGm值越负,则K越大,即反应进行得越完全 • rGm值越正,则K越小,即反应进行得不完全甚至不能进行 • 估计反应进行的可能性
rGm = rGm + RTlnQ 例: Zn(s)+ ½O2 (g) ZnO(s) rGm= 317. 9 kJ/mol Q= (pO2/p)1/2 • 欲使反应不能自发进行,则需:rGm0,即: RTln(pO2/p)1/2 rGm • (pO2/p)1/2 exp[rGm/RT] = exp[317. 9103 /(8. 314298)]
Zn(s)+ ½O2 (g) ZnO(s) (pO2/p)1/2 2×1056 pO2/p 4×10112 pO2 4×10107 Pa 0 • 就是说,即使 O2 的分压小到几乎为零,此反应仍然能自发进行。
同理,如果rGm很大正值,则在一般情况,rGm一般亦为正值,这就是说实际上在一般条件下反应不能自发进行。同理,如果rGm很大正值,则在一般情况,rGm一般亦为正值,这就是说实际上在一般条件下反应不能自发进行。 • 当 rGm 不是很大时,则不论其符号如何,都不能确定反应的方向;可以通过 Q 数值的调节,使反应向所希望的方向进行。
rGm的数值多负,反应就能自发进行? • rGm正到多大,反应就不能自发进行呢? • 没有一定的标准,一般说来,常温下,以40kJ/mol为界,即: rGm40kJ/mol,认为反应可自发进行; rGm40kJ/mol,认为反应不能自发进行; 半定量判据,估计反应能否自发进行.
2. 间接计算平衡常数 • 因为自由能G是状态函数,其变化值只取决于始态和终态,而与变化的途径无关。 • 所以rGm和反应热rHm一样,可以通过已知反应的标准自由能变化来计算,亦即反应的平衡常数也可通过已知反应的平衡常数来计算。
例: 已知25C 的 两个反应: 1) 2H2O(g) 2H2 (g) + O2 (g) rGm (1) 2) CO2(g)+H2(g)H2O(g)+CO(g) rGm (2) • 由 (1) + 2(2) 得: 3) 2CO2 (g) 2 CO (g) + O2 (g) rGm(3) = rGm (1)+2rGm(2) RTlnKf, 3 = RTlnKf, 1 2RTlnKf, 2 Kf, 3 = Kf, 1 (Kf, 2)2 • 化学方程式加减,对应标准反应Gibbs自由能加减,对应平衡常数乘除
例: 1) 2 H2O (g)⇌ 2 H2 (g)+ O2 (g) K1 2) 2 CO2 (g) ⇌ 2 CO (g) + O2 (g) K2 3) CO2 (g) + H2 (g)⇌CO (g) + H2O (g) K3 (3) = [(2)(1)]/2 K3 = (K2 /K1 )1/ 2
3. 标准反应Gibbs自由能rGm求法 1)通过平衡常数 3)通过电化学的可逆电池电动势 2)通过已知反应 4)通过统计力学的配分函数 5)通过热化学的rHm和 rSm rGm= rHm TrSm rHm <0 (放热)和 rSm >0 (熵增加)有利 6)通过标准摩尔生成Gibbs自由能(标准态最稳定单质完全转化为1mol标准态某物质Gibbs自由能的变化) DrGm = SBnBDfGm(B)
四、转化率(产率)a的计算(以气相反应为例) a <==>Kp
四、转化率(产率)a的计算(以气相反应为例) 求以下气体在标准压力下分解反应转化率 例1: N2O4 例2: HI 例3: H2O
第二节 化学平衡随温度、压力的关系 一、随压力 1. 理想气体 KP = KP(p)=Kc(RT) = Kxp • 只有Kx与p有关( ≠ 0时) ln Kx = ln Kp – Dn ln p Dn >0, p ↑, Kx↓, RP Dn <0, p ↑, Kx ↑, RP 压力增加,向着系数小,体积小/压力小的方向移动
第二节 化学平衡随温度、压力的关系 一、随压力 1. 理想气体 Dn >0, p ↑, Kx↓, RP Dn <0, p ↑, Kx ↑, RP 压力增加,向着系数小,体积小/压力小的方向移动 Le Chatelier's principle 如果改变影响平衡的一个因素,平衡就向能够减弱这种改变的方向移动,向着与该改变相反的方向移动;即朝着抵消外界条件变化所造成的影响的方向移动。
惰性气体对气相反应化学平衡的影响 • 保持体积不变充入惰性气体,参加反应气体分压不变,化学势不变,不影响化学平衡 • 保持总压不变充入惰性气体,将降低参加反应气体的分压,相当于压力减小的情况,所以平衡向方程式系数增加的一侧移动 Dn >0, N ↑, Kn ↑, RP Dn <0, N ↑, Kn↓, RP
2. 一般的非理想液态混合物 mB=mB*+RTlnaB 平衡时:DrGm=SBnBmB=SBnBmB*+RTln(PBaBnB)=0 DrVm >0, p ↑, Ka↓, RP DrVm <0, p ↑, Ka ↑, RP
3. 纯固体和/或纯液体之间的转化 DrGm=SBnBmB* 纯物质,无混合,反应可进行到底, 无平衡问题,完全转化 DrVm >0, p ↑, DrGm ↑, RP 反应物有利 DrVm <0, p ↑, DrGm ↓, RP 生成物有利
二、随温度 Le Chatelier's principle 改变影响平衡的一个因素,平衡向减弱这种改变的方向移动,即向与该改变相反的方向移动;也即朝着抵消外界条件变化所造成的影响的方向移动。 T ↑,吸热方向移动 T ↓,放热方向移动 放热反应: T ↑,RP;T ↓,RP 吸热反应: T ↑,RP;T ↓,RP
随温度热力学定量关系 rGm=RTlnK rHm>0 ,吸热, T ↑,K ↑,RP rHm<0 ,放热, T ↑,K↓,RP
若rHm随温度变化可忽略 rGm=RTlnK rSm(T1)= rSm(T2)