1 / 19

U 628 Computer Networks

U 628 Computer Networks. CLASS 11, Thu. Sep. 29 2005 Stefano Basagni Fall 2005 M,W,T 4:35pm-5:40pm. Limited-Contention Protocols. Put together the good of contention and collision-free protocols Observation: Contention protocols are symmetric

markku
Download Presentation

U 628 Computer Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. U 628Computer Networks CLASS 11, Thu. Sep. 29 2005 Stefano Basagni Fall 2005 M,W,T 4:35pm-5:40pm

  2. Limited-Contention Protocols • Put together the good of contention and collision-free protocols • Observation: Contention protocols are symmetric • Every terminal attempts to get the channel with a given probability p, same for all • Different probability could be helpful

  3. Performance of Symmetric Protocols, 1 • k terminals contend the channel • Each has probability p of transmitting in a slot • Probability that a terminal is successful in a slot is kp(1-p)k-1 • What is a good value for p? • Find the maximum of the function: 1/k • Probability of success with optimal p is (k-1/k) k-1

  4. Performance of Symmetric Protocols, 2 Acquisition probability for a symmetric contention channel

  5. Performance of Symmetric Protocols, 3 • For small numbers of terminal the odds are good • When N increases, the probability approaches its asymptotic value 1/e • The probability of getting the channel is possible by limiting the competition • This is the strategy of limited-contention protocols

  6. Strategy of Limited-Contention • Terminals are divided into groups • Only members of group 0 can compete for slot 0 • The one that succeeds transmits the frame • And so on … • Problem: Assigning terminals to slots • Extreme cases • One terminal per group: Countdown • Two terminals per group: Good for small p • All terminals in one group: Slotted Aloha

  7. Adaptive Tree Walk Protocols, 1 • Used for testing soldiers fro syphilis in WWII • Take a blood sample from N soldiers • A part of each was poured into one test tube • The mixed sample was tested for antibodies • If the mix was ok all soldiers were cleared • If not, the process was repeated recursively grouping N/2 soldiers, then N/4 etc. …

  8. Adaptive Tree Walk Protocols, 2 • Think the terminals as the leaves of a binary tree • In slot 0 all terminals try to get the channel • If one does, fine • If there is a collision, in slot 1 only the terminals in the sub-tree rooted at node 2 can try

  9. Adaptive Tree Walk Protocols, 3 • If one of 2’s sons acquire the channel the slot following the frame is for those terminal under node 3 • If there is a collision on slot 1, it is node 4’s turn during slot 2 • In general: Each bit slot is associated with a node in the tree • If there is a collision, the number of nodes is restricted to the left and right sub-trees • If a slot is idle or successful, we are done

  10. Wireless LAN Protocols • Common configuration • Office building • Access points (base stations) • Wired together (copper or fiber) • If the power is controlled to be up to 4m each room is a cell • Only one frequency though • Typical bandwidth is from 11 to 54Mbps

  11. Wireless LANs, Basic Problems • Due to the nature of the wireless channel • CSMA techniques cannot be used • Problems are with interference at the receiver, not at the sender • The hidden terminal problem • Terminals are not able to detect a potential competitor because it is too far away

  12. Hidden and Exposed Terminals A wireless LAN (a) A transmitting to B (hidden terminal) (b) B transmitting to A (exposed terminal)

  13. MACA • Multiple Access with Collision Avoidance • The sender “stimulate” the receiver in sending a short frame • This is heard by hidden and exposed terminals • Hidden terminals will not transmit for the duration of the transmission of the large data frame

  14. MACA: RTS and CTS, 1 • A send a frame to B • A starts by sending a Request to Send (RTS) frame to B • It is short: 30 bytes • Includes the length of the data frame to follow • B replies with a Clear to Send (CTS) frame • Includes the length of the frame to come, copied from the RTS • Upon receiving the CTS A starts transmitting the data frame

  15. MACA: RTS and CTS, 2 The MACA protocol (a) A sending an RTS to B (b) B responding with a CTS to A

  16. MACA: The Other Terminals • Terminals hearing the RTS are neighbors of A • They will be silent till A gets the CTS • Terminals hearing the CTS are neighbors of B • They will stay silent during the upcoming data transmission • They got the length from the CTS

  17. MACA: Problems • Collision can occur • A could receive RTSs from B and C at the same time • Not receiving the CTS back from A, B and C try again after a random time • The algorithm for computing the random time is called binary exponential backoff (Ethernet)

  18. MACA for Wireless • Bharghavan et al. (1994) • Introduced acks for successfully transmitted frames • Use minimal carrier sensing • When possible • The backoff algorithm is run for each source-destination pair (data stream)

  19. Assignments • Textbook, Chapter 4 till page 270 • Updated information in the class Blackboard page

More Related