1 / 15

Section 7.1

Section 7.1. Radical Expressions and Functions. Objectives. Radical Notation The Square Root Function The Cube Root Function. Radical Notation.

marlee
Download Presentation

Section 7.1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 7.1 • Radical Expressions and Functions

  2. Objectives Radical Notation The Square Root Function The Cube Root Function

  3. Radical Notation • Every positive number a has two square roots, one positive and one negative. Recall that the positive square root is called the principal square root. • The symbol is called the radical sign. • The expression under the radical sign is called the radicand, and an expression containing a radical sign is called a radical expression. • Examples of radical expressions:

  4. Example Evaluate each square root. a. b. c.

  5. Example Approximate to the nearest thousandth. Solution

  6. Example Evaluate the cube root. a. b. c.

  7. Example Find each root, if possible. a. b. c. Solution a. b. c. An even root of a negative number is not a real number.

  8. Example Write each expression in terms of an absolute value. a. b. c. Solution a. b. c.

  9. Example If possible, evaluate f(1) and f(2) for each f(x). a. b. Solution a. b.

  10. Example Calculate the hang time for a ball that is kicked 75 feet into the air. Does the hang time double when a ball is kicked twice as high? Use the formula Solution The hang time is The hang time is The hang times is less than double.

  11. Example Find the domain of each function. Write your answer in interval notation. a. b. Solution Solve 3 – 4x 0. The domain is b. Regardless of the value of x; the expression is always positive. The function is defined for all real numbers, and it domain is

More Related