1 / 9

The Binary Tree Data Structure

The Binary Tree Data Structure. Mugurel Ionu ț Andreica Spring 2012. The Elements of a Binary Tree. composed of nodes one special node: the root => rooted trees unrooted trees also exist (but they are not studied in this course) each node has: one left son (possibly NULL)

marlind
Download Presentation

The Binary Tree Data Structure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Binary Tree Data Structure Mugurel Ionuț Andreica Spring 2012

  2. The Elements of a Binary Tree • composed of nodes • one special node: the root => rooted trees • unrooted trees also exist (but they are not studied in this course) • each node has: • one left son (possibly NULL) • one right son (possibly NULL) • one parent (NULL, in case of the root) • a pointer to some useful information

  3. Binary Tree - example

  4. Binary Tree – C++ code void setRoot(BinaryTreeNode<T> *r){ root = r; } void insert(T x){ if (pinfo == NULL) setInfo(x); else insert_rec(x); } void insert_rec(T x){ int next_son = rand() % 2; if (next_son == 0) // left son{ if (left_son == NULL){ left_son = new BinaryTreeNode<T>; left_son->pinfo = new T; *(left_son->pinfo) = x; left_son->left_son = left_son->right_son = NULL; #include <stdio.h> #include <stdlib.h> char chstack[1000]; // will be used later template <typename T> class BinaryTreeNode { public: T *pinfo; BinaryTreeNode<T> *left_son, *right_son, *parent, *root; BinaryTreeNode() { pinfo = NULL; left_son = right_son = parent = NULL; root = this; } void setInfo(T info) { pinfo = new T; *pinfo = info; }

  5. Binary Tree – C++ code (cont.) left_son->parent = this; left_son->root = root; } else left_son->insert_rec(x); } else // right son { if (right_son == NULL){ right_son = new BinaryTreeNode<T>; right_son->pinfo = new T; *(right_son->pinfo) = x; right_son->left_son = right_son->right_son = NULL; right_son->parent = this; right_son->root = root; } else right_son->insert_rec(x); } BinaryTreeNode<T>* find(T x){ BinaryTree<T> *rez; if (pinfo == NULL) return NULL; // Use an equality testing function instead if ((*pinfo) == x) return this; if (left_son != NULL) rez = left_son->find(x); else rez = NULL; if (rez != NULL) return rez; elseif (right_son != NULL) return right_son->find(x);

  6. Binary Tree – C++ code (cont.) else return NULL; } void remove(){ BinaryTreeNode<T> *leaf; // find a leaf in this node's subtree leaf = findLeaf(); if (this == leaf){ if (parent == NULL) // this == root { if (this->pinfo != NULL) delete this->pinfo; root->pinfo = NULL;} else{ if (parent->left_son == this) parent->left_son = NULL; else parent->right_son = NULL; delete this->pinfo; delete this; }} else{ if (leaf->parent->left_son == leaf) leaf->parent->left_son = NULL; else leaf->parent->right_son = NULL; leaf->parent = parent; leaf->left_son = left_son; leaf->right_son = right_son; delete this->pinfo; this->pinfo = leaf->pinfo; delete leaf; } } void removeInfo(T x){ BinaryTreeNode<T> *t = find(x); if (t != NULL)t->remove(); } BinaryTreeNode<T>* findLeaf(){ if (left_son == NULL && right_son == NULL) return this;

  7. Binary Tree – C++ code (cont.) else if (left_son != NULL) return left_son->findLeaf(); else return right_son->findLeaf(); } void preOrderTraversal(){ printf("%d\n", *pinfo); /* we should use the correct format for printing type T values */ if (left_son != NULL) left_son->preOrderTraversal(); if (right_son != NULL) right_son->preOrderTraversal(); } void postOrderTraversal(){ if (left_son != NULL) left_son->postOrderTraversal(); if (right_son != NULL) right_son->postOrderTraversal(); printf("%d\n", *pinfo); /* we should use the correct format for printing type T values */ } void inOrderTraversal(){ if (left_son != NULL) left_son->inOrderTraversal(); printf("%d\n", *pinfo); /* we should use the correct format for printing type T values */ if (right_son != NULL) right_son->inOrderTraversal(); } void preOrderTraversal2(int level){ int i; for (i = 0; i < level; i++) printf("-"); printf("%d\n", *pinfo); /* we should use the correct format for printing type T values */

  8. Binary Tree – C++ code (cont.) int main(){ srand(7290); BinaryTreeNode<int> *r = new BinaryTreeNode<int>; // r->setRoot(r); r->insert(6); r->insert(8); r->insert(1); r->insert(9); r->insert(10); r->insert(4); r->insert(13); r->insert(1); r->insert(12); r->preOrderTraversal(); printf("___\n"); r->preOrderTraversal2(0); printf("___\n"); if (left_son != NULL) left_son->preOrderTraversal2(level + 1); if (right_son != NULL) right_son->preOrderTraversal2(level + 1); } void preOrderTraversal3(int level){ int i; for (i = 1; i <= level; i++) printf("%c", chstack[i]); printf("* %d\n", (*pinfo)); /* use the correct format */ chstack[level + 1] = 'L'; if (left_son != NULL) left_son->preOrderTraversal3(level + 1); chstack[level + 1] = 'R'; if (right_son != NULL) right_son->preOrderTraversal3(level + 1); } };

  9. Binary Tree – C++ code (cont.) r->preOrderTraversal3(0); printf("___\n"); r->postOrderTraversal(); printf("___\n"); r->inOrderTraversal(); printf("___\n"); printf("%d\n", r->find(100)); printf("%d\n", r->find(1)); printf("%d\n", r->find(12)); printf("%d\n", r->find(8)); printf("%d\n", r->find(10)); printf("%d\n", r->find(20)); (r->find(10))->remove(); printf("_______\n%d\n", r->find(1)); printf("%d\n", r->find(10)); printf("%d\n", r->find(12)); printf("%d\n", r->find(8)); return 0; }

More Related