1 / 40

Heavy Quark/onium in Hot Nuclear Matter

Heavy Quark/onium in Hot Nuclear Matter. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week 7) on “Quantifying the Properties of Hot QCD Matter” INT (Seattle), 06.-09.07.10.

marlis
Download Presentation

Heavy Quark/onium in Hot Nuclear Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy Quark/oniumin Hot Nuclear Matter Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week 7) on “Quantifying the Properties of Hot QCD Matter” INT (Seattle), 06.-09.07.10

  2. 1.) Introduction: Virtues of Heavy Quarks(c,b) • “Large” scale mQ >> LQCD , T • - factorization in production; thermal medium: pth2 ~ 2mQ T >> T2 • Interactions spacelike (“low” pt): • - quarkonium: potential QCD • - heavy-quark diffusion: Brownian motion • → unified framework • Beyond perturbation theory (as expansion) • → resummations, bound + scattering states • Constraints essential (latQCD, pQCD, vacuum spectrum,…) • Heavy-ion collisions: • - “initial-state” effects • - medium effects: equilibrium properties, expansion collectivity Q Q

  3. 1.2 Charm/onium Suppression at SPS + RHIC Heavy-Quark Suppression+Flow Anomalous J/y Suppression • Same force operative for • quarkonium (un)binding + heavy-quark transport?

  4. Outline 1.) Introduction 2.) T-Matrix for Heavy Quark/onium in QGP  Vacuum Spectroscopy, In-Medium Potentials  Spectral + Correlation Functions 3.) Quarkonia in Heavy-Ion Collisions  Thermal Rate Equation  Suppression vs. Regeneration 4.) Heavy-Quark Diffusion in QGP  Fokker-Planck + Thermalization  Observables at RHIC 5.) Conclusions

  5. 2.) Heavy-Quark Potential + Thermal T-Matrix • HQ potential well established in vacuum • (EFT, lattice, spectroscopy) • Quark-Gluon Plasma: bound+scattering states • (quarkonia + HQ transport) • Lippmann-Schwinger equation [Mannarelli+RR ’05, Cabrera+RR ’06, Riek+RR ‘09] In-Medium Q-QT-Matrix: - - • -Q-Q propagator: • importance of threshold effects • 2-body potential VL at finite temperature?

  6. 2.2 Heavy-Quark Free Energy in Lattice QCD • F1(r,T) = U1(r,T) – T S1(r,T) • Potential “Choices” : • (a) Free energy F1 • => weak potential, eB(1.1Tc) ~ 50 MeV • DmQ(T)~ F1(r=∞,T) small • (b) Internal Energy U1( U = ‹Hint› ) • => strong potential,eB(1.1Tc) ~ 500 MeV • DmQ(T) ~ U1(r=∞,T) large • approximate compensation in • bound-state mass: Ey = 2mc0 + 2DmQ-eB • need improved ways to extract HQ potential [Kaczmarek+Zantow ’05]

  7. 2.3 Corrections to Heavy-Quark Potential • Relativistic effects • - kinematics • - magnetic interaction → “Breit” correction: • VQ1Q2(r) → VQ1Q2(r) ( 1 – v1 · v2 )(↔ Poincaré-invariance, pQCD) • Retardation effects • - 4-D → 3-D reduction of Bethe-Salpeter equation • - energy transfer fixed (q0=0), off-shell behavior ambiguous • Gauge dependence of color-singlet free energy • Field-theoretic ansatz: • [Megias et al ‘07] • color-Coulomb: vector , string: • - fit color-average free energy to lat. QCD scalar •  implement into “extended T-Matrix approach” [Brown et al ‘52, ‘05] [Philipsen ‘08] [Riek+RR ‘10]

  8. 2.3.2 Temperature Dependence of Fit Parameters In-Medium HQ Free Energies Model Parameters • as ~ 0.3 • screening of color-Coulomb • + string term • “Debye masses” ~ T

  9. 2.4.1 Constraints I: Vacuum Spectroscopy Quarkonia D-Mesons • no hyperfine splitting • (bare) masses adjusted to ground state • ~ ±50 MeV accuracy

  10. 2.4.2 Constraints II: High-Energy Q-q Scattering Born Approximation compared to Perturbative QCD • Breit correction essential

  11. 2.5 Quarkonium Spectral Functions in Medium2.5.1 Lattice-QCD Correlators • direct computation of • Euclidean Correlation Fct. spectral function [Datta et al ‘04] hc [Asakawa et al ’03, Iida et al ’06, Aarts et al ‘07, Jakovac et al ‘07] J/y • ~20%variation for S-wave charmonia ~ 0.9-3 Tc • Bound states survive above Tc?!

  12. 2.5.2 T-Matrix Spectral Functions with Potential U Euclidean Correlator Ratio S-Wave Spectral Function (narrow-width limit) • S-wave ground state “melts” at Tdiss ≈ 2 Tc • correlator ratios within 30% (3D reduction scheme)

  13. 2.5.3 T-Matrix Spectral Functions with Potential F S-Wave Spectral Function Euclidean Correlator Ratio • S-wave ground state “melts” at Tdiss ≈ 1.3 Tc • reduced c-c threshold → low-energy strength - [Cabrera+RR ’06, Riek+RR ‘09]

  14. 2.5.4 Importance of Confining Force J/y Υ

  15. q q 2.6 Charmonium Widths in QGP → sensitive to binding energy (i.e., color screening) S-Wave Spectral Function J/y Dissociation Rates J/y as~0.25 Gymed=200MeV • accelerates “melting”: Tdiss ≈ 1.6 Tc • correlator ratio temperature-stable • J/y lifetime ~ 1-4 fm/c [Grandchamp+RR ’01]

  16. q q _ 2.6.2 Momentum Dependence of Inelastic Width • dashed lines: gluo-dissociation • solid lines: quasifree dissociation • similar to full NLO calculation [Park et al ‘07] [Zhao+RR ‘07]

  17. q q 2.6.3 Relation of Quarkonium Widths to EFT • Singlet-octet • transition • Landau • damping

  18. D - D J/y reaction rate equilibrium limit (y -width) - c c J/y 3.) Quarkonium Production in URHICs [PBM et al ’01, Gorenstein et al ’02,Thews et al ’01, Grandchamp+RR ’01, Ko et al ’02, Cassing et al ’03, Zhuang et al ’05, …] • Regeneration in QGP + HG: • -detailed balance → - ← J/y + g c + c + X • Input from Thermodynamic T-Matrix (weak/strong binding) Gy eBy mc*

  19. _ 3.1 Inputs and Parameters • Input • - J/y (cc, y’), c-c production cross sections [p-p data [PHENIX] ] • - “Cold Nuclear Matter”: shadowing, nuclear absorption, • pt broadening [p-A data] • - Thermal fireball evolution: • thermalization time (↔ initialT0), • expansion rate, lifetime, Tc , freezeout … • [hadron data, hydrodynamics] - • Parameters • - strong coupling ascontrols Gdiss • - schematic relaxation for c-quark equilibration: • Nyeq (t)~ Nytherm(t) · [1-exp(-t/tceq)]

  20. 3.2 Centrality Dependence of J/y at SPS + RHIC Strong-Binding Scenario (U) Weak-Binding Scenario (F) [Zhao+RR in prep] • regeneration controlled by c-quark relaxation time (tceq=6vs. 3 fm/c) • similar total yield, but different composition

  21. 3.3 pT-Dependence of J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) • weak binding problematic with pt-dependence?!

  22. 3.3.2 pT-Dependence II: Blast Wave at RHIC Regeneration only (Stat. Model) Rate-Equation (strong bind.) Au-Au 200AGeV [Andronic et al. ‘07] • blast wave at ~Tc too soft? • lever arm for direct prod. at high pT?

  23. 3.3.3 Charm-Quark pT-Spectra and Regeneration - • microscopic calculation of gain term c + c + g → J/y + g • supports sensitivity to thermal relaxation time of c quarks

  24. pQCD elastic scattering:g-1= ttherm ≥ 20 fm/cslow q,g c [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore ’04, Peshier,Gossiaux+Aichelin ‘09] • In-medium heavy-light T-matrix: direct connection to quarkonia! [van Hees et al ’07, Riek+RR ‘10] 4.) Heavy-Quark Diffusion in the QGP • Brownian • Motion: Fokker Planck Eq. [Svetitsky ’88,…] Q thermalization rate diffusion coefficient

  25. 4.2 Charm-Quark T-Matrix + Thermalization Thermal Q-qT-Matrix Thermalization Rate g [1/fm] T [GeV] • meson/diquark resonances for T <1.5Tc • factor 3-4 (~2) larger than pert. QCD • for U (F) potential [Riek+RR ‘10]

  26. 4.3 e± Spectra at RHIC T-mat T-mat [van Hees et al ‘07] • hadronic resonances at~Tc↔ quark coalescence • connects 2 “pillars” of RHIC: strong coupl. + coalescence

  27. 5.) Conclusions • Thermodynamic T-matrix for heavy quarks + quarkonia • - vacuum: spectroscopy + pQCD limit • - in-medium potential from lattice QCD? • U1 (Tdy~2Tc) , F1 (Tdy~1.3Tc) , or else … • - confining force mandatory for realistic calculations • Quarkonium phenomenology • - “strong” vs. “weak” J/y binding (pt-data, lever arm, …) • - bottomonium suppression? (less regeneration …) • Open heavy flavor • - resonances close to Tc ? (strong coupling + coalescence …) • - RHIC non-photonic e± Ds (2pT) ≈ 5 • - scrutinize medium evolution, Fokker-Planck, d-Au …

  28. 3.2.3 Rapidity Dependence at RHIC Thermal Rate-Eq Approach • regeneration yield sensitive to dNc/dy • hot matter effects insufficient • additional shadowing at forward y • (assuming constant sabs) [Kharzeev et al. ‘07, Ferreiro et al. ‘08] [Zhao+RR in prep]

  29. high pT: formation time ( ), • bottom feeddown, … [Karsch+Petronzio ’87, Blaizot+Ollitrault ‘87] 3.2.5 Momentum Spectra Au-Au 200AGeV • regeneration part → blast-wave at Tc • regeneration at low pT [Zhao+RR ’07, ‘08]

  30. 3.2.4 Momentum Spectra and Elliptic Flow • regeneration at low pt → small v2 • direct component at high pt → small v2 [Zhao+RR ’08, Zhuang et al ‘06]

  31. 2.4.2 Example from “Extended T-Matrix Model” S-Wave Spectral Function Euclidean Correlator Ratio hc - • ccpropagator with Gc= 100 MeV: • S-wave “melting” Tdiss ≈ 1.5-2 Tc • correlator ratio temperature-stable

  32. 4.3 Thermalization Rate and Diffusion Coefficient g [1/fm] T [GeV] T [GeV] • Factor ~3-4 larger thermalization rates than in pert. QCD • “different” approaches related, e.g. AdS/CFT ↔ Coulomb

  33. 2.4 Mesonic Spectral Functions + Correlators • Euclidean Correlation Function (precise lat-QCD data avail.!) Correlator Ratio:

  34. mc=1.7GeV mc* 2.2.2 Potential Models in the QGP [Mocsy+ Petreczky ’05,‘08] [Cabrera +RR ‘06] ~F1potential U1potential hc mc=1.7GeV • F1 low threshold (2mc~ 2.7GeV), • ground state Tdiss ~ 1.2 Tc • U1 decreasing threshold and eB, • Tdiss ~2.5Tc •  both scenarios compatible with lat-QCD

  35. 3.1.3 Equilibrium Limit (Statistical Model) - • fixed c-c number: • equilibrium • Y number: • (very) sensitive to • open-charm spectrum • thermal relaxation for • c-quark spectra: [Grandchamp et al ’03, Andronic et al ’07, …]

  36. 2.1.3 In-Medium Charm-Quark Mass in LQCD [Kaczmarek +Zantow ’05] [Velytsky et al ’09] F • U: large variation close toTc • – mass interpretation?! • fit quark-number fluctuations with • zero-width quasiparticle model • c(T) ~ ∂2P / ∂2mc

  37. 3.3.4 Rapidity Dependence at RHIC Statistical Model Thermal Rate-Eq Approach • reproduced in statistical hadronization • model (GC ensemble) [Andronic et al. ’07] • more problematic in dynamic • approaches • additional shadowing at forward y? [Capella et al. ’07, Zhao+RR ‘08] [Kharzeev et al. ‘07, Ferreiro et al. ‘08]

  38. 3.4 Upsilon at RHIC No Color-Debye Screening With Color-Debye Screening [Grandchamp et al. ’05] • (1S,2S) suppression unambiguous QGP signature ?! • NB: 50% feed-down on(1S)

  39. 3.3 Heavy-Quark Spectra at RHIC • relativistic Langevin simulation in elliptic expanding fireball background Nuclear Modification Factor Elliptic Flow pT [GeV] pT [GeV] • T-matrix approach ≈ effective resonance model • similar to “coll. dissoc.” [Adil+Vitev ’07]; radiative E-loss? (2↔3), …

  40. 2.3.2 Bottomonium Reaction Rates in QGP • color-screening accelerates dissociation • significance at RHIC: tY ≈ 50 →5 fm/c [Grandchamp et al. ’05]

More Related