1 / 18

A warm mode of accretion in simulations of galaxy formation

G. Murante – INAF OATo P. Monaco – Univ . Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ . Ts K. Dolag – Obs .. Munchen. A warm mode of accretion in simulations of galaxy formation. MUPP I : MU lti P hase P article I ntegrator.

marly
Download Presentation

A warm mode of accretion in simulations of galaxy formation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen A warm mode of accretion in simulations of galaxyformation Disk Galaxy Formation in a cosmological(context) content

  2. MUPPI: MUltiPhaseParticleIntegrator Murante, Monaco, Giovalli, Borgani, Diaferio, 2010, MNRAS, 405, 1491 • Star formation & feedback algorithm • Implemented in GADGET-3 • Integrates ISM equations for eachparticleateach SPH time step • Effectivethermal feedback • Obtains SK relation withoutimposingit • Gives ISM characteristics (See Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485) Disk Galaxy Formation in a cosmological(context) content

  3. MASS FLOWS STAR FORMATION COOLING EVAPORATION On hotphase! RESTORATION On coldphase! = MOLECULAR GAS MH2 ->SF = = Disk Galaxy Formation in a cosmological(context) content

  4. SPH Energy exchanges Multi-Phase particle Δt, ΔS Ėhydro = ΔS/(γ-1)ρ(γ-1)Δt Ėhot = -Ėcool+Ėsn+Ėhydro new ΔS etc... Disk Galaxy Formation in a cosmological(context) content

  5. ENERGY FLOW(S..) Hot phase energy ENERGY CONTRIBUTION DUE TO HYDRODYNAMICS • ENERGY RELEASED BY SNe • ENERGY LOSS DUE TO COOLING this is the ENTROPY variation due to SPH hydrodynamics PRESSURE-DRIVEN SF Phenomenological (Blitz & Rosolowsky 2006) Pext Ptherm with P0 = 35000 Disk Galaxy Formation in a cosmological(context) content

  6. More characteristics • Thermalenergygiventoneighbouringparticles in a directional way • Chemicalevolution (Tornatore et al 2007) • Primordial AND metal dependentcooling • Stocastickineticwinds: a fractionofparticlescontinouslyreceivealsokineticenergyfromneighbouringparticles. Theydecouplefrom the gas. Wind speeddepends on local SF. In cosmologicalsimulations, velocities up to 1000 km/s Disk Galaxy Formation in a cosmological(context) content

  7. Dynamical SK relation Monaco, Murante, Borgani,Dolag, 2012, MNRAS, 421, 2485 Disk Galaxy Formation in a cosmological(context) content

  8. Cosmological disk galaxysimulations (Stoehr+, 2002, MNRAS, 355, 84) (SeeThe Aquila comparison project, Scannapieco+, 2012, MNRAS, in press) Disk Galaxy Formation in a cosmological(context) content

  9. Our best disk galaxy Disk Galaxy Formation in a cosmological(context) content

  10. Howdoes the gas accrete? We: • usesimulationswithoutchemicalevolution/metal cooling • identifystars/gas particles at z=0 within R200, Rgal=0.1 R200 • followback particles and recordedtheir maximum T • alsoconstructSUBFIND merger trees of haloes • use three temperature ranges: • 0 < Tmax < 250,000 K (cold); • 250,000 K < Tmax < 106 K (warm) • Tmax > 106 K • seetowhichaccretionchannel gas particlesbelong, iftheyeverwereintoclumps, bothforparticleswithin R200 and Rgal. Murante, Calabrese, De Lucia, Monaco Borgani, Dolag, 2012, ApJL, 749, 34 Disk Galaxy Formation in a cosmological(context) content

  11. Disk Galaxy Formation in a cosmological(context) content

  12. Accretionchannels Warm gas GADGET Disk Galaxy Formation in a cosmological(context) content

  13. GA vs AQ Galaxy Halo Disk Galaxy Formation in a cosmological(context) content

  14. Multiphasepropertiesof gas in channels Aq-C-5 Disk Galaxy Formation in a cosmological(context) content

  15. Resolution (resultsforaccretion on galaxy) Disk Galaxy Formation in a cosmological(context) content

  16. Metal cooling (resultsfor GA1) Disk Galaxy Formation in a cosmological(context) content

  17. Clumpiness Cold gas isclumpy! Our gas clumpshave DM… (107Msolmin) Disk Galaxy Formation in a cosmological(context) content (resultsfor GA2)

  18. Conclusions • MUPPI can produce reasonable disk galaxies • Accretion on haloismainlycold • Withanefficientthermal feedback scheme, a new gas accretionchannel on galaxyarises: warmaccretion • Warmaccretionisfuelledby gas heatedbySne feedback • Coldaccretion on galaxiesisatleast 50% clumpy • Ourresultdoesnotdependuponresolution, ourchosenhalo, chemicalevolution/metal cooling: only on the efficiencyofthermal feedback • MUPPI can produce reasonable disk galaxies • Accretion on haloismainlycold • Withanefficientthermal feedbackscheme, a new gas accretionchannelon galaxyarises:warmaccretion • Warmaccretionisfuelledbygas heatedbySne feedback • Coldaccretionon galaxiesisatleast 50% clumpy • Ourresultdoesnotdependuponresolution, ourchosenhalo, chemicalevolution/metal cooling: only on the efficiencyofthermal feedback Disk Galaxy Formation in a cosmological(context) content

More Related