1 / 21

Математика је музика ума

Математика је музика ума. Корелацију наставе математике и музичке културе у инклузивном одељењу. Образовни циљ/еви иновације. Усвајањем појма осне симетрије, ученици уочавају симетричност објеката у својој околини и њихове особине, разумеју појам осе у осној симетрији.

marnie
Download Presentation

Математика је музика ума

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Математика је музика ума Корелацију наставе математике и музичке културе у инклузивном одељењу

  2. Образовни циљ/еви иновације • Усвајањем појма осне симетрије, ученици уочавају симетричност објеката у својој околини и њихове особине, разумеју појам осе у осној симетрији.

  3. Социјализација тј. развијање узајамног разумевања и прихватања ученика са специфичним понашањем и посебним потребама. Наглашавањем потребе за неговање љубави, поштовања, мира одговорности, среће, толеранције, сарадње, поштења, скромности, јединства и једноставности.

  4. ( Јачање партнерства између специјалних и редовних школа у контексту образовне инклузије) -Корелација са предметом Музичка култура, -Корелација са предметима : Ликовна култура, Биологија, Техничко и информатичко образовање, Историја, Верска настава...

  5. Опис иновације ТОК ЧАСА

  6. Иновативност се огледа у примени интегративне методе. На потпуно нов и надасве оригиналан начин обрађен је математички садржај у инклузивном одељењу.

  7. Уводни део часа: 15 мин. Час почиње музиком Моцарта "Клавирски концерт број 21" (анданте) Оформити три нехомогене групе ученика по приинципу један из специјалне а три из редовне школе ( основни, средњи и напредни ниво постигнућа ).

  8. 1.Задатак Свака група добије половину осносиметричне слике, док се друга половина налази прилепљена на табли. Очекујем да ученици из специјалне школе препознају делове који одговарају њиховој групи ( срце, лептир и цвет)

  9. Тим именима ословљаваћу одговарајућу групу. На питање : Какви су добијени ликови? Очекујем да неко од напредних ученика препозна и употреби појам : симетрични. Дакле, говоримо о симетричности једне фигуре тј. осној симетричности. Права по којој се цртеж савија (доводи до преклапањ) назива се оса симетрије. Приказати део презентације , до Роршахове мрље уз коментар ученика.

  10. Наставни листићи са задацима и Роштахов тест

  11. 25 минута 2. Задатак : Ученици у оквиру групе праве "своју мрљу". Посматрамо и истичемо осну симетричност. Показати још један део презентације, који се односи на симетричност у природи и уметности. Препоручити ученицима да на интернету пронађу презентацију и детаљније се позабаве њеним садржајем.

  12. 3. Задатак: Ученици добијају задатке диференциране у три нивоа и свако индивидуално ради. Оставља се могућност договарања у оквиру групе, уколико буде потребно. На крају гласно коментарисати и анализирати резултате рада. 4. Задатак: Ученици из специјалне школе распоређују музичке инструменте по принципу симетричности на два посебна пулта.

  13. Завршни део часа: 5 минута Дати домаћи задатак: 1. Препоручити да ставе "математичке наочаре" и препознају осну симетрију у свом окружењу. 2. Обзиром да су у недељу материце, да направе за своје мајке, симетрични цртеж, преклапањем. Час завршити приказивањем снимка балета "Плес малих лабудова" (Лабудово језеро) Чајковски и "Сплетом игара из Горњег Понишавја".

  14. ПРИЛОГ: диференцирани задаци у три нивоа • ДРУГИ ЗАДАТАК • 1. НИВО Прецртај фигуре на провидан папир а затим га пресави • 2. НИВО Напиши своје име, уочи осносиметрична слова и црвеном бојом нацртај осу симетрије • 3. НИВО Допуни цртеж тако да фигура буде осносиметрична • ПРВИ ЗАДАТАК • 1 .НИВО Пресавијањем преполови цртеже. • 2. НИВО Прецртај фигуре на провидан папир а затим га пресави • 3. НИВО На којој слици је приказано осносиметрично пресликавање?

  15. ТРЕЋИ ЗАДАТАК • 1. НИВО Обој фигуре које су симетричне у односу на обојену праву. • 2. НИВО Допуни цртеж тако да фигура буде осносиметрична. • 3. НИВО Савијањем папира, без цртања, начини модел • а) правог угла б) угла од 45º в) угла од 22º 30 ' • ЧЕТВРТИ ЗАДАТАК • 1.НИВО Повежи линијом симетричне делове шешира. • 2.НИВО На којој слици је приказано осносиметрично пресликавање? • 3. НИВО Колико оса симетрије имају ликови? • Симетрија је израз лепоте и хармоније природе. Постоји у ритму и мелодији песме.

  16. Методе и технике које се користе у иновацији метода демонстрације, илустративна метода, разговор, интегративна метода мимичка метода Методски приступ: опсерваторни.

  17. Резултати иновације Проширује се број актера у образовном процесу и презентују различити приступи истом садржају што доводи до бољег разумевања, а самим тим покреће и различите могућности примене. Неговање различитости и заједништва као социјалне компоненте се остварује на суптилан начин.

  18. Корелација математике са музичком културом

  19. Елементи иновативности • Паралелно реализовање различитих наставних јединица из • комплементарних предмета у другом образовном циклусу; • Диференцирани задаци за ученике са посебним потребама; • Примена мимичке методе- слика као подстицај.

  20. Душица Марковић наставник математике dusicamarkovic33@hotmail.com

More Related