1 / 34

CONVEZIONE FORZATA

CONVEZIONE FORZATA. Regime stazionario; r , c p costanti; fluido incomprimibile; assenza di generazione interna di calore; approssimazione di strato limite. u >> v. equazione di continuità:. quantità di moto lungo x:. equazione dell’energia. per y = d t T = T  (x).

marsha
Download Presentation

CONVEZIONE FORZATA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CONVEZIONE FORZATA

  2. Regime stazionario; • r, cpcostanti; • fluido incomprimibile; • assenza di generazione interna di calore; • approssimazione di strato limite. u >> v equazione di continuità: quantità di moto lungo x: equazione dell’energia per y = dt T = T(x) per y = d u = u EQUAZIONI DELLO STRATO LIMITE per y = 0 u = v = 0 T = Tp(x) Condizioni al contorno: per x = x0 u = u0(y) T = T0(y)

  3. velocità di attrito alla parete VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 1/3 L’ipotesi di PRANDTL (1875-1903) e VON KARMAN (1888-1963) ovvero con Da evidenze sperimentali emerge una variazione lineare del coefficiente eM con y, mentre, in prossimità della parete, l’effetto smorzante tende ad annullare le fluttuazioni.

  4. y+ ≤ 5: sottostrato viscoso y+  40: strato logaritimico VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 2/3 La relazione proposta da Van Driest è la seguente: dove K = 0,40 (costante di Von Karman) e A = 0,25 (per moto su lastra piana o nei tubi) Si distinguono 3 distinte zone in funzione della distanza dalla parete: 5 < y+ < 40: stato di transizione eMconfrontabile con n

  5. (definizione di sforzo tangenziale) con VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 3/3 Su lastra piana, con gradiente di pressione nullo nel senso della corrente, si ha: In forma adimensionale: Dall’integrazione di questa equazione con l’equazione di Van Driest e la condizione al contorno di scorrimento nullo alla parete (u+ = 0 per y+ = 0) si ottiene il profilo di velocità: Il calcolo si ottiene per vie numeriche, con i risultati del grafico di seguito riportato:

  6. Lo sforzo tangenziale alla parete risulta praticamente costante; ciò implica che nella regione vicina alla parete risulti costante anche il flusso termico (equazione dell’energia). DIFFUSIVITA’ TURBOLENTA E PROFILO DI TEMPERATURA 1/2 Le osservazioni di REYNOLDS (1842-1912) mettono in luce che le fluttuazioni turbolente originano trasporto di calore e di quantità di moto, evidenziando la similitudine tra i due processi: l’analogia di Reynolds diventa: e definendo Dati sperimentali mostrano che in realtà: Con questa relazione e con la si ricava il profilo di temperatura turbolento • Con le ipotesi di: • modesti gradienti di pressione; • termini convettivi trascurabili.

  7. DIFFUSIVITA’ TURBOLENTA E PROFILO DI TEMPERATURA 2/2 La costanza del flusso termico si traduce nella: Separando le variabili ed integrando: si ottiene: Introducendo poi: L’integrazione numerica dell’equazione attraverso la formula di Van Driest e la relazione Prt = 0,9, è graficata nella figura seguente:

  8. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 1/6 • Regime stazionario; • fluido incomprimibile e di proprietà costanti; • dissipazione viscosa trascurabile; • assenza di generazione interna di calore. Con le prime 2 equazioni si ricava il campo di moto che, introdotto nella III relazione, fornisce il campo termico. La soluzione analitica proposta da BLASIUS introduce la funzione di corrente ψ(x,y) definita dalle relazioni:

  9. VARIABILE DI SIMILITUDINE CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 2/6 Con la funzione di corrente, l’eq. di continuità è automaticamente soddisfatta; l’equazione della quantità di moto diventa: Si opera un cambio di variabili: Ottenendo le espressioni seguenti per u e v: trasformando l’equaz. della q.d.m. in un’equaz. differenziale ordinaria, del III ordine, non lineare:

  10. quindi e il coefficiente di attrito locale: CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 3/6 Le condizioni al contorno si scrivono: ovvero: La soluzione si ottiene attraverso metodi numerici. Lo spessore dello strato limite d (dove u/u = 0,99) si ottiene per h = 4,92 ed è pari a: mentre il gradiente di veolcità trasversale è: da cui si ottiene l’espressione dello sforzo tangenziale alla parete:

  11. gas, vapore acqueo, acqua liquida ad elevate T e P CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 4/6 EQUAZIONE DELL’ENERGIA Introducendo la variabile adimensionale: e si sostituisce nell’equazione dell’energia Si ipotizza una soluzione del tipo: con le condizioni al contorno e Confrontandola con la si evidenzia come per Pr  1 le equazioni risultino identiche Nel caso più generale (Pr ≠ 1) si può ricavare il gradiente di temperatura alla parete:

  12. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 5/6 Dal gradiente di temperatura si ricava il coefficiente locale di scambio termico: quindi Attraverso I valori locali dello sforzo tangenziale: si può ottenere il valore medio dello sforzo su una estensione L: il coefficiente di attrito medio: Il coefficiente di scambio termico medio:

  13. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 6/6 Si può esprimere una relazione che leghi i coefficienti di attrito e di scambio termico: Definendo il numero di Stanton: ovvero: risulta: (analogia di Reynolds-Colburn) Dalla misura del coefficiente di attrito si risale al coefficiente di scambio termico.

  14. Moto laminare transizione Moto turbolento u u u u turbolento laminare transizione CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto turbolento 1/2 Il moto su lastra piana assume caratteristiche diverse in funzione del numero di Reynolds:

  15. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto turbolento 2/2 Rispetto al moto laminare, lo strato limite turbolento cresce più rapidamente: Il coefficiente di attrito decresce più gradualmente: Attraverso l’analogia di Reynolds si ricava l’espressione dello scambio termico: I coefficienti di convezione risultano più elevati rispetto al moto laminare

  16. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 1/4 Il parametro guida è il numero di Reynolds definito come: Per Re > 5 avviene la separazione dello stato limite con distacco e formazione di vortici:

  17. Parallelamente, la velocità subisce un incremento nella zona anteriore, per poi rallentare quando la pressione cresce: in questa fase può avvenire che il gradiente di velocità lungo y si annulli, ed è proprio qui che avviene il distacco. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 2/4 Partendo dal punto di ristagno, la pressione diminuisce nella parte frontale del cilindro, per poi aumentare nella parte posteriore. Successivamente si verifica anche un flusso invertito: il moto diventa vorticoso e con una forte componente di casualità.

  18. Per bassi valori di Re (i primi due) il moto si mantiene laminare fino al distacco (q = 80°); successivamente il coefficiente cresce per l’instaurarsi di moti vorticosi. • Al crescere di Re le curve presentano due minimi: • uno per il passaggio da moto laminare a turbolento; • l’altro in corrispondenza della separazione (q = 140°). Cilindro investito da aria CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 3/4 La complessità del fenomeno suggerisce un approccio sperimentale per ciò che concerne l’analisi dello scambio termico:

  19. Valida per: CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 4/4 Il valore medio del coefficiente di scambio termico sull’area complessiva del cilindro soddisfa la relazione: con Ts temperatura della superficie del cilindro Un espressione di tale coefficiente è stata ottenuta da Whitaker:

  20. Passo longitudinale Passo trasversale con CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 1/4 BANCO DI TUBI ALLINEATI Tale configurazione dà origine a flussi termici non troppo elevati e a modeste cadute di pressione; il numero di Reynolds significativo è:

  21. Passo trasversale Passo longitudinale Passo diagonale se CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 2/4 BANCO DI TUBI SFALSATI Tale configurazione dà origine a flussi termici molto elevati e ad altrettanto elevate cadute di pressione; il numero di Reynolds significativo è: con altrimenti vale la relazione dei tubi allineati.

  22. CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 3/4 Il coefficiente di scambio termico per tali configurazioni è definito dalla relazione di Zukauskas: valida per un numero di schiere N > 10, per 1000 < ReD < 2x106 e per 0,7 < Pr < 500. n = 0 per i gas e 0,25 per I liquidi; C ed m variano come segue: Tubi sfalsati Tubi allineati

  23. Tubi allineati Tubi sfalsati CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 4/4 La caduta totale di pressione si può valutare attraverso una correlazione sperimentale, proposta sempre da Zukauskas: in cui f è il fattore d’attrito e Z è un fattore di correzione che dipende dalla configurazione della schiera:

  24. Tubi allineati (SL= ST) Tubi sfalsati (configurazione triangolare con interasse pari a SD) CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso parallelo a banchi di tubi Risultati sperimentali suggeriscono la valutazione del coefficiente di scambio termico come segue: in cui C risulta pari a:

  25. CONVEZIONE FORZATA NEI CONDOTTI Valgono considerazioni simili al deflusso esterno alle superfici, considerando semplicemente che vi sono frontiere che condizionano lo sviluppo dello strato limite. Dopo una regione di ingresso in cui avviene l’accrescimento dello strato limite, il moto nel resto del condotto diventa completamente sviluppato. Nel moto laminare c.s., ricordando l’equazione della q.d.m. in coordinate cilindriche: Con le condizioni di strato limite sviluppato: Integrando due volte rispetto ad r:

  26. CONVEZIONE FORZATA NEI CONDOTTI Le condizioni al contorno per il calcolo delle due costanti: aderenza alla parete simmetria della velocità rispetto all’asse Si ottiene dunque: Con velocità massima per r=0: La velocità massima pari al doppio della velocità media: Quindi:

  27. CONVEZIONE FORZATA NEI CONDOTTI Introducendo il fattore di attrito f: si ottiene: Il caso di maggior interesse per la maggioranza delle applicazioni pratiche è comunque il moto turbolento. Nei condotti la transizione da moto laminare a turbolento si ha per ReD > 2000. Per ReD > 10000 il moto è completamente turbolento. C’è una zona di ingresso in cui lo strato limite è ancora laminare, la sua estensione è:

  28. con: v* velocità di attrito alla parete; Tm temperatura di miscela con e poichè CONVEZIONE FORZATA NEI CONDOTTI Si utilizzano i risultati della geometria piana, con gli stessi coefficienti del moto laminare: La distribuzione di velocità (moto turbolento) è: y è la distanza dalla parete del condotto.

  29. e ricordando che nei tubi il fattore di attrito è: si ottiene, per tubi lisci: forma semplificata DIAGRAMMA DI MOODY HAALAND formulazione esplicita, errore dell’1,5% CONVEZIONE FORZATA NEI CONDOTTI Sostituendo nell’espressione di Cf si ottiene: L’effetto della rugosità si riassume con la scabrezza assoluta e, che modifica l’espressione del fattore d’attrito come segue (COLEBROOK):

  30. CONVEZIONE FORZATA NEI CONDOTTI DIAGRAMMA DI MOODY

  31. SFORZO TANGENZIALE con: FLUSSO TERMICO Ipotizzando valida questa relazione anche per (COLBURN) CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Nel moto laminare vale la relazione: Tale relazione si può applicare anche al moto turbolento, infatti: Se Pr = Prt = 1 le due equazioni sono analoghe a dal loro sviluppo si deduce: Sostituendo l’espressione di COLEBROOK semplificata: si ottiene ovvero

  32. DITTUS - BOELTER 0,4 per TP > Tm (riscaldamento) 0,3 per TP < Tm (raffreddamento) SIEDER E TATE CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Per tenere conto del differente comportamento delle caratteristiche del fluido in riscaldamento ed in raffreddamento: con: n Se la viscosità varia considerevolmente con la temperatura:

  33. PETUKHOV 0,11 per riscaldamento 0,25 per rarreddamento 0 flusso termico uniforme alla parete NUSSELT CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Le precedenti relazioni valgono per tubi lisci; per condotti rugosi si utilizza la : con: n Lo scambio termico nella zona di ingresso, quando cioè il moto non è completamente sviluppato, è descritto dalla:

  34. CONVEZIONE FORZATA NEI CONDOTTI CONDOTTI A SEZIONE NON CIRCOLARE Valgono tutte le correlazioni viste finore a patto che si sotituisca il diametro D del condotto con il diametro idraulico: con: Ac = sezione trasversale del condotto p = perimetro bagnato del condotto

More Related