160 likes | 366 Views
Ferromagnetism and the quantum critical point in Zr 1-x Nb x Zn 2. D. Sokolov, W. Gannon, and M. C. Aronson * University of Michigan Z. Fisk Florida State University. * Supported by the U. S. National Science Foundation. Quantum Critical Points and Superconductivity.
E N D
Ferromagnetism and the quantum critical point in Zr1-xNbxZn2 D. Sokolov, W. Gannon, and M. C. Aronson *University of Michigan Z. Fisk Florida State University *Supported by the U. S. National Science Foundation
Quantum Critical Points and Superconductivity Heavy Fermion Intermetallics Complex Oxides CePd2Si2 (Mathur 1998)
Quantum Criticality in Itinerant Magnets Antiferromagnet Ferromagnet Cr-V (Yeh 2002) UGe2 (Saxena 2000)
ZrZn2: Itinerant Ferromagnet ZrZn2 spin density (4.2 K) C15 Laves Phase Pickart 1964
Ferromagnetic Quantum Critical Point in ZrZn2 : Pressure (Grosche 1995) 10.5 kbar Pc = 8 kbar 0.4 kbar
Zr1-xNbxZn2 Polycrystalline samples m(H=0,T) = m0,0(x)(1-T/TC)bb=0.5 TC and m(H=0,T=0) are suppressed by Nb doping x
Quantum Critical Point in Zr1-xNbxZn2 (x=xC=0.085) TC % Nb (x) Three dimensional Heisenberg ferromagnet (xC=0.085) TC(d+n)/zQ (x-xC) (d=3, z=2+n=3) TC4/3Q (x-xC)
ZrZn2: Stoner Ferromagnet Huang 1988 states/Ry-cell E (Ry) xC [ Stoner ferromagnet (+ magnetic fluctuations) a=I N(Ef) m0Q (a-1)1/2 TC Q (a-1)1/2 mo Q TC
The Initial Susceptibility c • x<xC c-1=co-1t g t=(T-TC)/TC • x>xC c-1=co-1+CTg • x=xC c-1=CTg xC=8.5%
x=0 x=0.055 x=0.08 The Critical Susceptibility (x<xC) x=0 c= cot-g g=1.08+/- 0.05 mean field 0.01<t<100 x=0.08 c=cot-gg=1.33+/-0.05 Heisenberg ferromagnet 0.01<t<100 TC (K) g reduced temperatures Fe 1044 K 1.33+/-0.02 10-5<t<10-2 Co 1388 K 1.21+/-0.04 10-3<t<10-2 Ni 627 K 1.35+/- 0.02 10-3<t<10-2 3d Heisenberg 1.33 model Suppression of mean field behavior near quantum critical point
Mean Field – Heisenberg Crossover slope=-1 slope=-4/3 x<<xC, large t: c~t-1x~xC, small t: c~t-4/3/(x-xC) Crossover function: c~t-4/3 f(t1/3/(x-xC)) ~t-4/3f(y) large y: f(y)~y-4/3 small y: f(y)~y-1
L>>x L<<x equal reduced temperatures T The Ordered Phase x xC Interactions become more local as xYxC, : L<<x increasing importance of fluctuations Matrix more highly polarizable as xYxC: divergence of co
ParamagneticPhase (x>xC) 0.14 0.12 0.09 T=0 c-1=co-1 + CTg xYxC: co-1Y0 x=0.08 x=0.12 x=0.14 Stoner ferromagnet: c(T,x) = cpauli/(1-a(x))
The T=0 Disordered State FM x>xC: c(T)-1=c0-1+CT4/3 [ • x=xCc(T)=C/Tgg=d+n/z = 4/3 (3d Heisenberg FM) • g=1/2n=1 (n=1/d-1) (clean QC FM) • g=1/n=1 (n=1/d-2) (dirty QC FM) • g=1-l (Griffiths Phase)
g2co/t 60 30 20 10 5 x=xC x<<xC Superconductivity near a Ferromagnetic QCP c(q,w) = coko2/[k2+q2-iw/h(q)] Monthoux and Lonzarich 2001 k2=x(T=0)-1~ (x-xC)