1 / 87

纳米技术

纳米技术. 21 世纪的科技新星. 一、纳米的基本知识. 1 . 纳米的概念 纳米 ” 是英文 nanometer 的译名,是一种度量单位, 1 纳米为百万分之一毫米,即 1 毫微米,也就是十亿分之一米,约相当于 45 个原子串起来那么长。纳米结构通常是指尺寸在 100 纳米以下的微小结构。 纳米研究的范围是 1 到 100 纳米, 0 . 1 纳米是单个氢原子的尺寸,因此所谓 0 . 1 纳米层面的 “ 纳米技术 ” 是不存在的。. 2 . 纳米科技概念的提出与发展.

Download Presentation

纳米技术

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 纳米技术 21世纪的科技新星

  2. 一、纳米的基本知识 1 .纳米的概念 纳米”是英文nanometer的译名,是一种度量单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。 纳米研究的范围是1到100纳米,0.1纳米是单个氢原子的尺寸,因此所谓0.1纳米层面的“纳米技术”是不存在的。

  3. 2.纳米科技概念的提出与发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费恩曼。纳米科技的迅速发展是在80年代末、90年代初。80年代初发明了费恩曼所期望的纳米科技研究的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM)等微观表征和操纵技术,它们对纳米科技的发展起到了积极的促进作用。与此同时,纳米尺度上的多学科交叉展现了巨大的生命力,迅速形成为一个有广泛学科内容和潜在应用前景的研究领域。

  4. 二、纳米科技的研究领域 1.纳米材料 纳米材料是纳米科技发展的重要基础。纳米材料是指材料的几何尺寸达到纳米级尺度,并且具有特殊性能的材料。其主要类型为:纳米颗粒与粉体、纳米碳管和一维纳米材料、纳米薄膜、纳米块材。纳米材料结构的特殊性[如大的比表面以及一系列新的效应(小尺寸效应、界面效应、量子效应和量子隧道效应)]决定了纳米材料出现许多不同于传统材料的独特性能,进一步优化了材料的电学、热学及光学性能。对于纳米材料的研究包括两个方面:一是系统地研究纳米材料的性能、微结构和谱学特征,通过和常规材料对比,找出纳米材料特殊的规律,建立描述和表征纳米材料的新概念和新理论;二是发展新型纳米材料。目前纳米材料应用的关键技术问题是在大规模制备的质量控制中,如何做到均匀化、分散化、稳定化 。

  5. 2 .纳米器件  纳米科技的最终目的是以原子、分子为起点,去制造具有特殊功能的产品。因此,纳米器件的研制和应用水平是进入纳米时代的重要标志。如前所述,纳米技术发展的一个主要推动力来自于信息产业。

  6. 纳米电子学的目标是将集成电路的几何结构进一步减小,超越目前发展中遇到的极限,因而使得功能密度和数据通过量达到新的水平。在纳米尺度下,现有的电子器件把电子视为粒子的前提不复存在,因而会出现种种新的现象,产生新的效应,如量子效应。利用量子效应而工作的电子器件称为量子器件,像共振隧道二级管、量子阱激光器和量子干涉部件等。与电子器件相比,量子器件具有高速(速度可提高1000倍)、低耗(能耗降低1000倍)、高效、高集成度、经济可靠等优点。为制造具有特定功能的纳米产品,其技术路线可分为“自上而下”(top down)和“自下而上”(bottom up)两种方式。

  7. “自上而下”是指通过微加工或固态技术,不断在尺寸上将人类创造的功能产品微型化;而“自下而上,是指以原子、分子为基本单元,根据人们的意愿进行设计和组装,·从而构筑成具有特定功能的产品。这种技术路线将减少对原材料的需求,降低环境污染。 科学家希望通过纳米生物学的研究,进一步掌握在纳米尺度上应用生物学原理制造生物分子器件,目前,在纳米化工、生物传感器、生物分子计算机、纳米分子马达等方面,科学家都做了重要的尝试。

  8. 3.纳米结构的检测与表征 为在纳米尺度上研究材料和器件的结构及性能,发现新现象,发展新方法,创造新技术,必须建立纳米尺度的检测与表征手段。这包括在纳米尺度上原位研究各种纳米结构的电、力、磁、光学特性,纳米空间的化学反应过程,物理传输过程,以及研究原子、分子的排列、组装与奇异物性的关系。  扫描探针显微镜(SPM)的出现,标志着人类在对微观尺度的探索方面进入到一个全新的领域。作为纳米科技重要研究手段的SPM也被形象地称为纳米科技的“眼”和“手”。

  9. 所谓“眼睛”,即可利用SPM直接观察原子、分子以及纳米粒子的相互作用与特性。  所谓“手”,是指SPM可用于移动原子、构造纳米结构,同时为科学家提供在纳米尺度下研究新现象、提出新理论的微小实验室。  同时,与纳米材料和结构制备过程相结合,以及与纳米器件性能检测相结合的多种新型纳米检测技术的研究和开发也受到广泛重视。如激光镊子技术可用于操纵单个生物大分子。

  10. 三、纳米科技前景的展望 纳米技术在现代科技和工业领域有着广泛的应用前景。比如,在信息技术领域,据估计,再有10年左右的时间,现在普遍使用的数据处理和存储技术将达到最终极限。为获得更强大的信息处理能力,人们正在开发DNA计算机和量子计算机,而制造这两种计算机都需要有控制单个分子和原子的技术能力。

  11. 传感器是纳米技术应用的一个重要领域。随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。比如,将微型传感器装在包装箱内,可通过全球定位系统,可对贵重物品的运输过程实施跟踪监督;将微型传感器装在汽车轮胎中,可制造出智能轮胎,这种轮胎会告诉司机轮胎何时需要更换或充气;还有些可承受恶劣环境的微型传感器可放在发动机汽缸内,对发动机的工作性能进行监视。在食品工业领域,这种微型传感器可用来监测食物是否变质,比如把它安装在酒瓶盖上就可判断酒的状况等。 传感器是纳米技术应用的一个重要领域。随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。比如,将微型传感器装在包装箱内,可通过全球定位系统,可对贵重物品的运输过程实施跟踪监督;将微型传感器装在汽车轮胎中,可制造出智能轮胎,这种轮胎会告诉司机轮胎何时需要更换或充气;还有些可承受恶劣环境的微型传感器可放在发动机汽缸内,对发动机的工作性能进行监视。在食品工业领域,这种微型传感器可用来监测食物是否变质,比如把它安装在酒瓶盖上就可判断酒的状况等。 

  12. 1.材料和制备 在纳米尺度上,通过精确地控制尺寸和成分来合成材料单元,制备更轻、更强和可设计的材料,同时具有长寿命和低维修费用的特点;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料、生物材料和仿生材料。实现材料破坏过程中纳米级损伤的诊断和修复。 在陶瓷领域的应用随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,则它将具有高硬度、高韧性、低温超塑性、易加工等优点。

  13. 用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用作电冰箱、空调外壳里的抗菌除味塑料。用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用作电冰箱、空调外壳里的抗菌除味塑料。

  14. 2.微电子和计算机技术 可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。 纳米结构的微处理器的效率提高1兆倍,并实现太比特的存储器(提高1000倍);

  15. 纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高,将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高,将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。

  16. 3.环境和能源 环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。  制备孔径lnm的纳孔材料作为催化剂的载体,纳米孔材料和纳米膜材料(孔径l0~l00nm)用来消除水和空气中的污染;成倍的提高太阳能电池的能量转换效率。

  17. 4.医学与健康 纳米技术将给医学带来变革:纳米级粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修补损伤组织,科研人员已经成功利用纳米微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。;在人工器官外面涂上纳米粒子可预防移植后的排斥反应;研究耐用的与人体友好的人工组织、器官复明和复聪器件;疾病早期诊断的纳米传感器系统。

  18. 研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测。诊断,并实施特殊治疗。

  19. 5.生物技术 虽然分子计算机目前只是处于理想阶段,但科学家已经考虑应用几种生物分子制造计算机的组件,其中细菌视紫红质最具前景。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用,它将使单位物质的储存和信息处理能力提高上百万倍。

  20. 在纳米尺度上按照预定的对称性和排列制备具有生物活性的蛋白质、核糖核酸等,在纳米材料和器件中植入生物材料使其兼具生物功能和其他功能,生物仿生化学药品和生物可降解材料;动植物的基因改善和治疗,测定DNA的基因芯片等。在纳米尺度上按照预定的对称性和排列制备具有生物活性的蛋白质、核糖核酸等,在纳米材料和器件中植入生物材料使其兼具生物功能和其他功能,生物仿生化学药品和生物可降解材料;动植物的基因改善和治疗,测定DNA的基因芯片等。

  21. 6.航天和航空 纳米器件在航空航天领域的应用,不仅是增加有效载荷,更重要的是使耗能指标成指数倍的降低。这方面的研究内容还包括:研制低能耗、抗辐照、高性能计算机;微型航天器用纳米集成的测试、控制电子设备;抗热障、耐磨损的纳米结构涂层材料。 采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命

  22. 7.国家安全  由于纳米技术对经济社会的广泛渗透性,拥有纳米技术知识产权和广泛应用这些技术的国家,将在国家经济安全和国防安全方面处于有利地位。通过先进的纳米电子器件在信息控制方面的应用,将使军队在预警、导弹拦截等领域快速反应;通过纳米机械学,微小机器人的应用,将提高部队的灵活性和增加战斗的有效性;用纳米和微米机械设备控制,国家核防卫系统的性能将大幅度提高;通过纳米材料技术的应用,可使武器装备的耐腐蚀、吸波性和隐蔽性大大提高,可用于舰船、潜艇和战斗机等。

  23. 四、各国对纳米技术的积极应对 因此,发达国家的政府和企业纷纷投入大量人力、物力和财力进行纳米科技的研究和产业化。 目前,美国已在纳米结构组装体系、高比表面纳米颗粒制备与合成,以及纳米生物学方面处于领先地位,在纳米器件、纳米仪器、超精度工程、陶瓷和其他结构材料方面略逊于欧共体。 日本在纳米器件和复合纳米结构方面有优势,在分子电子学技术领域也有很强的实力,紧随德国之后。德国在纳米材料、纳米测量技术、超薄膜的研发领域具有很强的优势。

  24. 美国于2000年2月宣布启动“国家纳米科技计划(NNI)”,在2001年财政年度拨款4.95亿美元以加强研究实力。政府认为纳米技术就像20世纪50年代的晶体管一样,其科研和工业化的应用将进一步促进美国经济的发展;为美国培养新世纪的技术人才;增强美国国际科技竞争力的需要;节约资源能源,保证美国未来的可持续发展;纳米技术是开发未来微型武器的技术基础,是国防工业的未来。美国于2000年2月宣布启动“国家纳米科技计划(NNI)”,在2001年财政年度拨款4.95亿美元以加强研究实力。政府认为纳米技术就像20世纪50年代的晶体管一样,其科研和工业化的应用将进一步促进美国经济的发展;为美国培养新世纪的技术人才;增强美国国际科技竞争力的需要;节约资源能源,保证美国未来的可持续发展;纳米技术是开发未来微型武器的技术基础,是国防工业的未来。

  25. 德国拟建立或改组六个政府与企业联合的研发中心,并启动国家级的研究计划。  法国最近决定投资8亿法郎建立一个占地8公顷、建筑面积为6万平方米、拥有3500人的微米/纳米技术发明中心,配备最先进的仪器设备和超净室,并成立微米纳米技术之家,专门负责申请专利和帮助研究人员建立创新企业。德国拟建立或改组六个政府与企业联合的研发中心,并启动国家级的研究计划。  法国最近决定投资8亿法郎建立一个占地8公顷、建筑面积为6万平方米、拥有3500人的微米/纳米技术发明中心,配备最先进的仪器设备和超净室,并成立微米纳米技术之家,专门负责申请专利和帮助研究人员建立创新企业。 日本除继续推动早已开始的纳米科技计划外,每年投资2亿美元推动新的国家计划和新的研究中心建设。

  26. 五、纳米的奇异特性 ①表面效应    球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加,假如原子间距为3X10-4微米,表面原子仅占一层,粗略地估算表面原子所占的百分数见下表。

  27. 超微颗粒表面原子百分数与颗粒直径的关系 直径(′10-4微米)10501001000 质子总数    30 4′103 3′104 3′106 表面质子百分数 10040202

  28. 由上表可见,对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100米2,这时的表面效应将不容忽略。超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2′10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了"沸腾"状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。由上表可见,对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100米2,这时的表面效应将不容忽略。超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2′10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了"沸腾"状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。

  29. ②小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。

  30. (1) 特殊的光学性质 当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。

  31. (2) 特殊的热学性质 固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327C左右;银的常规熔点为670C,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~1微米的铜、镍超微颗粒制成导电浆料可代替钯与银等贵金属。超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。例如,在钨颗粒中附加0.1%~0.5%重量比的超微镍颗粒后,可使烧结温度从3000℃降低到1200~1300℃,以致可在较低的温度下烧制成大功率半导体管的基片。

  32. (3) 特殊的磁学性质 人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。磁性超微颗粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依靠它游向营养丰富的水底。通过电子显微镜的研究表明,在趋磁细菌体内通常含有直径约为2′10-2微米的磁性氧化物颗粒。小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为80安/米,而当颗粒尺寸减小到2′10-2微米以下时,其矫顽力可增加1千倍,若进一步减小其尺寸,大约小于6′10-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已作成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。

  33. (4)特殊的力学性质 陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。至于金属一陶瓷等复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。

  34. ③宏观量子隧道效应 各种元素的原子具有特定的光谱线,如钠原子具有黄色的光谱线。原子模型与量子力学已用能级的概念进行了合理的解释,由无数的原子构成固体时,单独原子的能级就并合成能带,由于电子数目很多,能带中能级的间距很小,因此可以看作是连续的,从能带理论出发成功地解释了大块金属、半导体、绝缘体之间的联系与区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。因此,对超微颗粒在低温条件下必须考虑量子效应,原有宏观规律已不再成立。

  35. 电子具有粒子性又具有波动性,因此存在隧道效应。近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在0.25微米。目前研制的量子共振隧穿晶体管就是利用量子效应制成的新一代器件。电子具有粒子性又具有波动性,因此存在隧道效应。近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在0.25微米。目前研制的量子共振隧穿晶体管就是利用量子效应制成的新一代器件。

  36. 六、纳米材料应用热点评述 纳米技术涉及的范围很广,纳米材料只是其中的一部分,但它却是纳米技术发展的基础。如超细薄膜的厚度通常只有1纳米―5纳米,甚至会做成1个分子或1个原子的厚度。超细薄膜可以是有机物也可以是无机物,具有广泛的用途。如沉淀在半导体上的纳米单层,可用来制造太阳能电池,对开发新型清洁能源有重要意义;将几层薄膜沉淀在不同材料上,可形成具有特殊磁特性的多层薄膜,是制造高密度磁盘的基本材料。碳纳米管是由碳60分子经加工形成的一种直径只有几纳米的微型管,是纳米材料研究的重点之一。

  37. 与其它材料相比,碳纳米管具有特殊的机械、电子和化学性能,可制成具有导体、半导体或绝缘体特性的高强度纤维,在传感器、锂离子电池、场发射显示、增强复合材料等领域有广泛应用前景,因而受到工业界的普遍重视。目前,碳纳米管虽仍处于研究阶段,但许多研究成果已显示出良好的应用前景。陶瓷材料在通常情况下具有坚硬、易碎的特点,但由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性,有的可大幅度弯曲而不断裂,表现出金属般的柔韧性和可加工性。与其它材料相比,碳纳米管具有特殊的机械、电子和化学性能,可制成具有导体、半导体或绝缘体特性的高强度纤维,在传感器、锂离子电池、场发射显示、增强复合材料等领域有广泛应用前景,因而受到工业界的普遍重视。目前,碳纳米管虽仍处于研究阶段,但许多研究成果已显示出良好的应用前景。陶瓷材料在通常情况下具有坚硬、易碎的特点,但由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性,有的可大幅度弯曲而不断裂,表现出金属般的柔韧性和可加工性。

  38. 七、几种典型的纳米材料 在长期的晶体材料研究中,人们视具有完整空间点阵结构的实体为晶体,是晶体材料的主体;而把空间点阵中的空位、替位原子、间隙原子、相界、位错和晶界看作晶体材料中的缺陷。 如果从逆方向思考问题,把“缺陷”作为主体,研制出一种晶界占有相当大体积比的材料,那么世界将会是怎样?格兰特教授经过4年的不懈努力,他领导的研究组终于在1984年研制成功了黑色金属粉末。实验表明,任何金属颗粒,当其尺寸在纳米量级时都呈黑色。纳米固体材料(nanometer sized materials)就这样诞生了。

  39. 效应颜料 这是纳米材料最重要最有前途的用途之一,特别是在汽车的涂装业中,因为纳米材料具有随角变统汽车面漆大增光辉,深受配受专家的喜爱。 防护材料 由于某些纳米材料透明性好和具有优异的紫外线屏蔽作用。在产品和材料中添加少量(一般不超过含量的2%)的纳米材料,就会大大减弱紫外线对这些产品和材料的损伤作用,使之更加具有耐久性和透明性。因而被广泛用于护肤产品、所装材料、外用面漆、木器保护、天然和人造纤维以及农用塑料薄膜等方面。

  40. 精细陶瓷材料使用纳米材料可以在低温、低压下生产质地致密且性能优异的陶瓷。因为这些纳米粒子非常小,很容易压实在一起。此外,这些粒子陶瓷组成的新材料是一种极薄的透明涂料,喷涂在诸如玻璃、塑料、金属、漆器甚至磨光的大理石上,具有防污、防尘、耐刮、耐磨、防火等功能。涂有这种陶瓷的塑料眼镜片既轻又耐磨,还不易破碎。 催化剂纳米粒子表面积大、表面活性中心多,为做催化剂提供了必要的条件。目前用纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原及合成反应的催化剂,可大大提高反应效率。利用纳米镍粉作为火箭固体燃料反应催化剂,燃烧效率可提高100倍,如用硅载体镍催化剂对丙醛的氧化反应表明,镍粒径在5nm以下,反应选择性发生急剧变化,醛分解反应得到有效控制,生成酒精的转化率急剧增大。精细陶瓷材料使用纳米材料可以在低温、低压下生产质地致密且性能优异的陶瓷。因为这些纳米粒子非常小,很容易压实在一起。此外,这些粒子陶瓷组成的新材料是一种极薄的透明涂料,喷涂在诸如玻璃、塑料、金属、漆器甚至磨光的大理石上,具有防污、防尘、耐刮、耐磨、防火等功能。涂有这种陶瓷的塑料眼镜片既轻又耐磨,还不易破碎。 催化剂纳米粒子表面积大、表面活性中心多,为做催化剂提供了必要的条件。目前用纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原及合成反应的催化剂,可大大提高反应效率。利用纳米镍粉作为火箭固体燃料反应催化剂,燃烧效率可提高100倍,如用硅载体镍催化剂对丙醛的氧化反应表明,镍粒径在5nm以下,反应选择性发生急剧变化,醛分解反应得到有效控制,生成酒精的转化率急剧增大。

  41. 磁性材料 纳米粒子属单磁畴区结构的粒子,它的磁化过程完全由旋转磁化进行,即使不磁化也是永久性磁体,因此用它可作永久性磁性材料。磁性纳料粒具有单磁畴结构及矫顽力很高的特征,用它来做磁记录材料可以提高信噪比,改善图象质量。当磁性材料的粒径小于临界半径时,粒子就变得有顺磁性,称之为超顺磁性,这时磁相互作用弱。利用这种超强磁性可作磁流体,磁流体具有液体的流动性和磁体的磁性,它在工业废液处理方面有着广阔的应用前景。

  42. 传感材料纳米粒子具有高比表面积、高活性、特殊的物理性质及超微小性等特征,是适合用作传感器材料的最有前途的材料。外界环境的改变会迅速引起纳料粒子表面或界面离子价态和电子运输的变化,利用其电阻的显著变化可做成传感器,其特点是响应速度快、灵敏度高、选择性优良。传感材料纳米粒子具有高比表面积、高活性、特殊的物理性质及超微小性等特征,是适合用作传感器材料的最有前途的材料。外界环境的改变会迅速引起纳料粒子表面或界面离子价态和电子运输的变化,利用其电阻的显著变化可做成传感器,其特点是响应速度快、灵敏度高、选择性优良。

  43. 光电材料与光学材料纳米材料由于其特殊的电子结构与光学性能作为非线性光学材料、特异吸光材料、军事航空中用的吸波隐身材料,以及包括太阳能电池在内的储能及能量转换材料等具有很高的应用价值。光电材料与光学材料纳米材料由于其特殊的电子结构与光学性能作为非线性光学材料、特异吸光材料、军事航空中用的吸波隐身材料,以及包括太阳能电池在内的储能及能量转换材料等具有很高的应用价值。

  44. 增强材料纳米结构的合金具有很高的延展性等,在航空航天工业与汽车工业中是一类很有应用前景的材料;纳米硅作为水泥的添加剂可大大提高其强度;纳米纤维作硫化橡胶的添加剂可增强橡胶并提高其回弹性,纳米管在作纤维增强材料方面也有潜在的应用前景。增强材料纳米结构的合金具有很高的延展性等,在航空航天工业与汽车工业中是一类很有应用前景的材料;纳米硅作为水泥的添加剂可大大提高其强度;纳米纤维作硫化橡胶的添加剂可增强橡胶并提高其回弹性,纳米管在作纤维增强材料方面也有潜在的应用前景。

  45. 纳米滤膜采用纳米材料发展出分离仅在分子结构上有微小差别的多组分混合物,实现高能分离操全的纳米滤膜。其它还有将纳米材料用作火箭燃料推进剂、H2分离膜、颜料稳定剂及智能涂料、复合磁性材料等。纳料材料由于具有特异的光、电、磁、热、声、力、化学和生物学性能,广泛应用于宇航、国防工业、磁记录设备、计算机工程、环境保护、化工、医药、生物工程和核工业等领域。不仅在高科技领域有不可替代的作用,也为传统产业带来生机和活力。可以预言,纳米材料制备技术的不断开发及应用范围的拓展,必将对传统的化学工业和其它产业重大影响。纳米滤膜采用纳米材料发展出分离仅在分子结构上有微小差别的多组分混合物,实现高能分离操全的纳米滤膜。其它还有将纳米材料用作火箭燃料推进剂、H2分离膜、颜料稳定剂及智能涂料、复合磁性材料等。纳料材料由于具有特异的光、电、磁、热、声、力、化学和生物学性能,广泛应用于宇航、国防工业、磁记录设备、计算机工程、环境保护、化工、医药、生物工程和核工业等领域。不仅在高科技领域有不可替代的作用,也为传统产业带来生机和活力。可以预言,纳米材料制备技术的不断开发及应用范围的拓展,必将对传统的化学工业和其它产业重大影响。

  46. 超双亲性界面物性材料(同时具有超亲水性及超亲油性的表面)  研究表明,光的照射可引起TiO2表面在纳米区域形成亲水性及亲油性两相共存的二元协同纳米界面结构。这样在宏观的TiO2表面将表现出奇妙的超双亲性。利用这种原理制作的新材料,可修饰玻璃表面及建筑材料表面,使之具有自清洁及防雾等效果。这种双亲二元协同原理,同样可以用来指导我们进一步设计和创成在其他基材上使用的超双亲性修饰剂。例如,在纤维及衣物上使用修饰剂,将使它们具有超双亲性。可以设想洗涤衣物可以仅用清水冲洗,不再使用传统的洗洁剂;同样也可以应用到人造血管和人造人体的形成,并且改善同活体组织的兼容性,来实现长时间的使用寿命。

  47. 超双疏性界面物性材料 利用由下到上、由原子到分子、由分子到聚集体的外延生长纳米化学方法,可以在特定的表面上建造纳米尺寸同何形状互补的(如凸与凹相间)界面结构。由于在纳米尺寸低凹的表面可使吸附气体分子稳定存存,所以在宏观表面上相当于有一层稳定的气体薄膜,使油或水无法与材料的表面直接接触,从而使材料的表面呈现超常的双疏性。这时水滴或油滴与界面的接触角趋于最大值。如果在输油管的管道内壁采用带有防静电功能的材料建造这种表面修饰涂层,则可实施石油与管壁的无接触运输。这对于输油管道的安全运行有重要价值。

  48. 纳米尺度光阳极、光阴极两相共存的高效光催化界面材料纳米尺度光阳极、光阴极两相共存的高效光催化界面材料 借助光化学和光电化学的研究思想,利用纳米化学方法,计划研制多种具有光化学活性的纳米杂化的界面材料。例如,在TiO2表面的纳米区域内可以构建光阳极与光阴极共存的二元协同界面结构,在紫外光的照射下具有高效的光催化效果。可以用来分解有毒气体(如:甲,苯,氧化氮等),杀死其表面接触的细菌。该材料将在空气净化和杀菌抑菌方面有重要的应用。

  49. 八、在化工领域的应用 纳米二氧化钛(TiO2)作为一种新型光催化剂、抗紫外线剂、光电效应剂等,以其神奇的功能,将在抗菌防霉、排气净化、脱臭、水处理、防污、耐候抗老化、汽车面漆等领域显示广阔的应用前景。随着其产品工业化生产和功能性应用发展的日趋成熟,它在环境、信息、材料、能源、医疗与卫生等领域的技术革命中将起到不可低估的作用。 将纳米TiO2粉体按一定比例加入到化妆品中,则可以有效地遮蔽紫外线。

  50. 纳米TiO2抗菌防霉机理由于TiO2电子结构所具有的特点,使其受光时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机污染物的作用。当遇到细菌时,直接攻击细菌的细胞,致使细菌细胞内的有机物降解,以此杀灭细菌,并使之分解。一般常用的杀菌剂银、铜等能使细菌细胞失去活性,但细菌杀死后,尸体释放出内毒素等有害的组分。纳米TiO2不仅能影响细菌繁殖力,而且能破坏细菌的细胞膜结构,达到彻底降解细菌,防止内毒素引起的二次污染。纳米TiO2属于非溶出型材料,在降解有机污染物和杀灭细菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。纳米TiO2抗菌防霉机理由于TiO2电子结构所具有的特点,使其受光时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机污染物的作用。当遇到细菌时,直接攻击细菌的细胞,致使细菌细胞内的有机物降解,以此杀灭细菌,并使之分解。一般常用的杀菌剂银、铜等能使细菌细胞失去活性,但细菌杀死后,尸体释放出内毒素等有害的组分。纳米TiO2不仅能影响细菌繁殖力,而且能破坏细菌的细胞膜结构,达到彻底降解细菌,防止内毒素引起的二次污染。纳米TiO2属于非溶出型材料,在降解有机污染物和杀灭细菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。

More Related