1 / 44

Zuk ü nftige Beschleunigerprojekte am CERN

Zuk ü nftige Beschleunigerprojekte am CERN. Frank Zimmermann Jahresversammlung des Kommittees f ür B eschleunigerphysik Darmstadt, 29 November 2013. Thanks to R. Aleksan , R. Assmann , A. Blondel, O. Br ü ning , A. Butterworth, Y . Cai,

marty
Download Presentation

Zuk ü nftige Beschleunigerprojekte am CERN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ZukünftigeBeschleunigerprojekte am CERN Frank Zimmermann Jahresversammlung des KommitteesfürBeschleunigerphysik Darmstadt, 29 November 2013 Thanks to R. Aleksan, R. Assmann, A. Blondel, O. Brüning, A. Butterworth, Y. Cai, R. Calaga, O. Dominguez, J. Ellis, B. Holzer, P. Janot, E. Jensen, M. Klein, M. Koratzinos, S. Myers, K. Ohmi, K. Oide, J. Osborne, L. Rossi, R. Schmidt J. Seeman, V. Telnov, R. Tomas, J. Wenninge, U. Wienands, K. Yokoya, M. Zanetti, … , r Work supported by the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

  2. LHC: pp, AA&pAKollisionenhöchsterEnergie pp Parameter: ECM = 14 TeVdesign 8 TeV in 2012 L = 1034cm-2s-1

  3. LHC –historischeEntstehung 1983 LEP Note 440 -S. Myers and W. Schnell propose twin-ring pp collider in LEP tunnel with 9-T dipoles 1991 CERN Council: LHC approval in principle 1992 EoI, LoI of experiments 1993 SSC termination 1994 CERN Council: LHC approval 1995-98 cooperation w.Japan,India,Russia,Canada,&US 2000 LEP completion 2006 last s.c. dipole delivered 2008 first beam 2010 first collisions at 3.5 TeV beam energy 2015 collisions at ~design energy (plan) >30 years! now is the time to plan for ~2040

  4. DIE Frage der nächstenJahrzehnte C. Grojean, 2nd LEP3/TLEP workshop, 18 June 2012

  5. kreisförmigeHiggs-Fabriken LHeC SAPPHiRE TLEP VHE-LHC/TLEP ep gg e+e- pp

  6. Large Hadron electron Collider (LHeC) ) 100 MW total wall-plug power, Lepup to 2x1034 cm-2s-1 next LHeC workshop Chavannes-de-Bogis 20-21 January 2014 indico.cern.ch confId=278903 ERL LHeC: recirculating linac with energy recovery

  7. LHeC ERL Anlage two SC linacs, 3-pass up, 3-pass down; 6.4-mA 60-GeV e-’s collide w. LHC p/ions, e- RF grad ~20 MV/m, 800 MHz A. Bogacz, O. Brüning, M. Klein, D. Schulte, F. Zimmermann, et al (C=1/3 LHC allows for ion clearing gaps)

  8. ggHiggs-Fabrik? IR s-channel production; lower energy; no e+source physics few J pulse energy with l~350 nm passive optical cavity →relaxed laserparameters power evolution of cwdouble-clad fiber lasers with diffraction limited beam quality over the past decade: factor 100 increase! laser optical cavity Source: Fiber lasers and amplifiers: an ultrafast performance evolution, Jens Limpert, Thomas Schreiber, and Andreas Tünnermann, Applied Optics, Vol. 49, No. 25 (2010) K. Moenig et al, DESY Zeuthen

  9. SAPPHiREggHiggs-Fabrik 100 MW total wall-plug power, Lgg~6x1032 cm-2s-1 Reconfigured LHeC scale ~ European XFEL, about 10-20k Higgs per year SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

  10. LaseroptionenfürSAPPHiRE industry Livermore J. Gronberg, LLNL Y. Zaouter, Amplitude Systems full power w/o optical cavity! 10 J at 10 kHz ICAN EuCARD SAPPHiRE Day 19 February 2013 G. Mourou, LOA; M. Velasco, Northwestern U.

  11. Vergleich der ep& gg Higgs-Fabriken (1 year = 107s at design luminosity).

  12. European Strategyemphasizes high-energy pp & e+e-collisions

  13. ein 80-100 km Tunnel beiGenf J. Osborne, C. Waaijer, CERN, ARUP & GADZ, submitted to European Strategy Symposium 2012 TLEP/VHE-LHC

  14. ist 80-100 km zugroβ? “Of course, it should not be the size of an accelerator, but its costs which must be minimized.” Gustav-Adolf Voss, builder of PETRA, † 5. October 2013

  15. TLEP (e+e-) Hauptparameter energy = 91, 160, 240, 350 & 500 GeV c.m. circumference ~100 km total SR power ≤ 100 MW #IPs = 2 or 4 beam-beam tune shift / IP scaled from LEP luminosity / IP ~ 5x1034cm-2s-1 at the Higgs ~1000 x LEP2 top-up injection by* = 1 mm ~ sz

  16. b* - historischer Trend b* [m] year SPEAR PEP, BEPC, LEP PETRA TRISTAN DORIS CESR-c, PEP-II BEPC-II CESR DAFNE KEKB TLEP SuperKEKB IP beam size

  17. SuperKEKBwirdTLEP Machbarkeitzeigen beam commissioning will start in early 2015 • by*=300 mm (TLEP: 1 mm) • lifetime 5 min (TLEP: ~15min) • ey/ex=0.25% ! (TLEP: 0.2%) • off momentum acceptance (±1.5%, TLEP: ±2%) • e+ production rate (2.5x1012/s, TLEP: <1x1011/s)

  18. Luminosität von e+e- colliders TLEP-Z S. Henderson TLEP-W TLEP-H TLEP-t

  19. Luminositätvone+e-Higgs-Fabriken ultimate precision at Z, WW, ZH ; sensitive to New Physics in multi-TeVrange & to SM closure → case for VHE-LHC ultimate energy reach up to 1 or 3 TeV ; direct searches for New Physics

  20. TLEP Herausforderungen short beam lifetime from Bhabha scattering lifetime limit from beamstrahlung highly efficient SRF system (+ cheap magnets) synchrotron radiation quasi continuous top up injection flat beams (small vertical emittance) final focus with largeE acceptance >50% wall plug to beam power per meter & critical energy more benign than for other rings

  21. hoheLuminosität→ booster ring for top up injection into collider A. Blondel

  22. Teilchenphysikbei TLEP? and much more John Ellis King’s College London

  23. ppHiggs-Fabriken LHCis the 1st Higgs factory! ECM=8-14 TeV,1034cm-2s-1 HL-LHC (~2022-2030): ECM=14 TeV,5x1034cm-2s-1 (leveled) VHE-LHC/FHCin new ~100 km tunnel (2040?) ECM=100 TeV,1034cm-2s-1 1 M Higgs produced so far – more to come! 15 H bosons / min – and more to come 10x more Higgs 42x higher cross section for H self coupling

  24. höheres Feld → Technologiewechsel VHE-LHC McIntyre Fresca2 E. Todesco, L. Rossi

  25. wostehenwirmitNb3Sn? Nb3Sn performance has greatlyimproved (doubled in tenyears) E. Todesco, L. Bottura

  26. kostenoptimierteMagnete 20-T dipole 15-T dipole beam pipe beam pipe • 15 T dipoles + 100 km circumference → 100 TeVpp • 20 T dipoles + 80 km circumference → 100 TeVpp E. Todesco, L. Rossi,P. McIntyre

  27. VHE-LHC/FHC (pp) Hauptparameter Main Parameters for FHC (VHE-LHC) energy = 100 TeVc.m. dipole field = 15 T (baseline) [20 T option] circumference ~100 km #IPs = 4 total beam-beam tune shift = 0.01 bunch spacing = 25 ns [5 ns option] peak luminosity = 1034 cm-2s-1 b* ~ 1.1 m [2 m conservative option] linked to total beam current (~0.1 A)

  28. VHE-LHC/FHC Herausforderungen synchrotron radiation heat load synchrotron radiation damping luminosity limits (radiation damage, pile up) machine protection warm photon absorbers? controlled blow up? shorter bunch spacing? crab wait collisions? many more magnet sectors?

  29. Teilchenphysik am VHE-LHC/FHC? NimaArkani-Hamed Institute for Advanced Study in Princeton

  30. möglicheLangzeitstrategie TLEP (80-100 km, e+e-, up to ~350 GeV c.m.) PSB PS (0.6 km) LHC (26.7 km) SPS (6.9 km) VHE-LHC/FHC (pp, up to 100 TeVc.m.) LHeC & SAPPHiRE? & e± (120 GeV) – p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) ≥50 years of e+e-, pp, ep/A physics at highest energies

  31. Skizze der Zeitskala 1980 2000 2010 1990 2030 2020 2040 Design, R&D LHC Constr. Physics Proto. Design, R&D HL-LHC Constr. Physics Design, R&D Physics LHeC/SAPPHiRE? Constr. Design, R&D TLEP Physics Constr. Design, R&D Constr. Physics VHE-LHC

  32. FCC Studie - Umfang & Struktur Future Circular Colliders (FCC) - Conceptual Design Study & Cost Review for next European Strategy Update Infrastructure tunnels, surface buildings, transport (access roads), civil engineering, cooling ventilation, electricity, cryogenics, communication & IT, fabrication and installation processes, maintenance, environmental impact and monitoring, safety Hadron collider Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs HE-LHC comparison Operation concept Detector concept Physics requirements e+ e- collider Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs Injector (Booster) Operation concept Detector concept Physics requirements Hadron injectors Beam optics and dynamics Functional specs Performance specs Critical technical systems Operation concept e- p option: Physics, Integration, additional requirements two pillars: pp & e+e-; emphasis on pp machine, driving infrastructure

  33. Team zur Kickoff- u. Studienvorbereitung Future Circular Colliders - Conceptual Design Study Study coordination, host state relations, global cost estimate M. Benedikt, F. Zimmermann High Field Magnets L. Bottura Supercon-ducting RF E. Jensen Cryogenics L. Tavian Specific Technologies (MP, Coll, Vac, BI, BT,PO) JM. Jimenez VL Hadron collider D. Schulte Infrastructure, cost estimates P. Lebrun e+ e- collider J. Wenninger Hadron injectors B. Goddard Physics and experiments Hadron physic Experiments, infrastructure A. Ball, F. Gianotti, M. Mangano e+ e- exper., physics A. BlondelJ.Ellis, P.Janot e- p physics + M. Klein e- p option Integration aspects O. Brüning Operation aspects, energy efficiency, OP & mainten., safety, environment. P. Collier Planning (Implementation roadmap, financial planning, reporting) F. Sonnemann German speakers

  34. FCC “kick-off meeting” U. Geneva 12-15 February 2014! http://indico.cern.ch/e/fcc-kickoff

  35. Wirhoffenauf regeMitarbeit! Vielen Dank!

  36. back-up slides

  37. LHeCConceptual Design Report 2012 LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012) ~600 pages

  38. L-RLHeC road map to ≥1033cm-2s-1 luminosity of LR collider: HD~1.3 D. Schulte LHeC2010 (round beams) average e- current limited by energy recovery efficiency Ie=6.4 mA • maximize geometric • overlap factor • head-on collision • small e- emittance • qc=0 • Hhg≥0.9 highest proton beam brightness “permitted” (ultimate LHC values) ge=3.75 mm Nb=1.7x1011 bunch spacing 25 or 50 ns • smallest conceivable • proton b* function: • reduced l* (23 m → 10 m) • squeeze only one p beam • new magnet technology Nb3Sn • b*p=0.1 m

  39. LHeC baseline & Higgs factory parameters Lep ~2 1034 cm-2s-1

  40. LHeC SRF & ERL test facility design under study configuration 1 – 75 per pass Final energy 150 5 MeV Injector Dump configuration 1 – 150 per pass Final energy 300 5 MeV Injector Dump configuration 1 – 300 per pass Final energy 900 (two additional arcs) 5 MeV Injector Dump various stages A. Valloni, O. Brüning, E. Jensen, M. Klein

  41. Higgs factory performances Precision on couplings, cross sections, mass, width,Summary of the ICFA HF2012 workshop (FNAL, Nov. 2012) arxiv1302:3318 • Circular Higgs Factory really goes to • precision at few permil level.

  42. CERN Courier article, 19 July 2013 John Ellis

  43. Leiter der FCC Designstudie Michael Benedikt Leader Frank Zimmermann Deputy Leader F. Bordry

  44. eine LHC Entdeckung

More Related