240 likes | 671 Views
Mechanics of thin film on wafer. R91943100 詹孫戎. Mechanics of thin film on wafer. Basic mechanics Axial stress, strainPoisson’s ratio Poisson’s ratio Shear stress,strain,modulus Stress-strain Thermal strain Mechanical properties of microelectronic material
E N D
Mechanics of thin film on wafer R91943100 詹孫戎
Mechanics of thin film on wafer • Basic mechanics • Axial stress, strainPoisson’s ratio • Poisson’s ratio • Shear stress,strain,modulus • Stress-strain • Thermal strain • Mechanical properties of microelectronic material • Effective Young’s modulus of composite layers • Substrate warpage • Biaxial stress in thin film on thick substrate • Mechanics of film-on-foil electronics • Failure resistance of amorphous silicon transistors • Mobility in thin-film under compressive strain • Reference
Axial stress • Load P(Newton): • Internal resultant normal force • Area A (m2): • Cross-section area of the bar • Stressσ (N/m2;Pa): • Average normal stress at any point on the cross-sectional area • σ >0 tensile • σ <0 compressive Source:Mechanics of materials by R.C.Hibbeler
Axial strain • Strainε(dimensionless): • Deformation changes in length • Average elongation/Original length • Yong’s modulus E (N/m2;Pa):
Poisson’s ratio • Poisson’s ratio ν: • Transverse strain/Longitudinal strain • ν= 0.5 → volume conserved Source:Mechanics of materials by R.C.Hibbeler
Shear stress,strain,modulus • Shear stress τ (N/m2;Pa): • V (Newton) ;internal result shear force • A (m2):area at the section • Shear strain γ (rad) • Shear modulus G (N/m2;Pa): Source:Mechanics of materials by R.C.Hibbeler
Stress-strain • Low stress • Elastic • stress/strain = constant • σy = yield stress • Ultimate stress – material break • Si (brittle) ;ultimate stress ~ yield stree Source:UC Berkeley EE143,Lec 25
Thermal strain • 1εth = ∫[αf(T) – αs(T)] dT ≒ (αf – αs)(TDep – Troom) Source:UC Berkeley EE143,Lec 25
Effective Young’s modulus of composite layers • Stressing along x-direction • All layers takes the same strain • Ex = fAEA + fBEB • Material with lager E takes larger stress • Stressing along y-direction • All layers takes the same stress • Material with small E takes larger strain Source:UC Berkeley EE143,Lec 25
Substrate warpage • Radius of curvature of warpage • Stoney’s equation • ts:substrate thickness • tf:film thickness • Es:Young’s modulus of substrate • υs:Posson’s ratio of subsrate Source:UC Berkeley EE143,Lec 25
Biaxial stress in thin film on thick substrate • σz = 0 • No stress direction normal to substrate • Assume isotropic film • εx = εy = ε → σx = σy = σ Source:UC Berkeley EE143,Lec 25
Mechanics of film-on-foil electronics • When sheet is bent • Top surface in tension • Bottom surface in compression • Neutral surface:one surface inside the sheet has no strain • Strain in top surface: • df:film thickness • ds:substrate thickness • Circuit sandwiched between substrate and encapsulation layer • Circuit in the neutral surface if Source:Z.Sue,E.Y.Ma,H.Gleskova, and S.Wagner, Appl.Phys.Lett.74,1177(1999)
Mechanics of film-on-foil electronics • Film and substrate have different Young’s moduli • η = df/ds • χ = Yf/Ys • Two kids of substrate • Steel: Yf/Ys ≒100 • Plastic: Yf/Ys ≒1 Source:Z.Sue,E.Y.Ma,H.Gleskova, and S.Wagner,Appl.Phys.Lett.74,1177(1999)
Failure resistance of amorphous silicon transistors • a-Si:H TFTs • 51-μm-thick polyimide • Both side coated 0.5-μm-thick SiNx • 100-nm-thick Ti/Cr layer electrode • 360nm gate SiNx • 100nm undoped a-Si:H • 180nm passivating SiNx • 50nm (n+) a-Si:H • 100nm Al for source-drain contact • Compliant substrate • Without SiNx back layer • Stiff substrate • With SiNx back layer Source:H.Gleskova,S.Wagner,and Z.Sue,Appl.Phys.Lett.75,3011(1999)
Failure resistance of amorphous silicon transistors • TFT bent to a radius R • χ= Yf/Ys;η1= df1/ds; η2= df2/ds • Yf≒200GPa;Ys≒5GPa • TFT • Compressed by at least 2% without failing • Tensile 0.5% Source:H.Gleskova,S.Wagner,and Z.Sue, Appl.Phys.Lett.75,3011(1999)
Failure resistance of amorphous silicon transistors Source:H.Gleskova,S.Wagner,and Z.Sue,Appl.Phys.Lett.75,3011(1999)
Mobility in thin-film under compressive strain • Electronic mobility in amorphous silicon thin-film transistor under compressive strain Source:H.Gleskova,S.Wagner ,Appl.Phys.Lett.79,3347(2001)
Reference • UC Berkeley EE143,Lec 25 • Mechanics of materials by R.C.Hibbeler • Z.Sue,E.Y.Ma,H.Gleskova,and S.Wagner,Appl.Phys.Lett.74,1177(1999) • H.Gleskova,S.Wagner,and Z.Sue,Appl.Phys.Lett.75,3011(1999) • H.Gleskova,S.Wagner ,Appl.Phys.Lett.79,3347(2001)