3.69k likes | 4.02k Views
科技管理 MANAGEMENT OF TECHNOLOGY AND INNOVATION 代碼 ; D-NT00-04161. 授課 吳剛鳳. 輔仁大學 全人教育中心. 系統工程與管理學術之關係. 系統工程管理. 強調 科技管理在 系統生命週期 中之作為. 科學管理 Scientific Management. 科學管理之父 -Fredrick W. Taylor 。 Midvale 鋼鐵公司工作期間觀察員工生產力。 1895 年向機械工程學會發表管理觀念 。 1903-1911 年著書闡述理念。 科學管理基本原理 以科學方法 ,尋求最佳工作方式。
E N D
科技管理MANAGEMENT OF TECHNOLOGY AND INNOVATION代碼; D-NT00-04161 授課 吳剛鳳 輔仁大學 全人教育中心
系統工程管理 強調 科技管理在 系統生命週期 中之作為
科學管理Scientific Management • 科學管理之父-Fredrick W. Taylor 。 • Midvale 鋼鐵公司工作期間觀察員工生產力。 • 1895年向機械工程學會發表管理觀念。 • 1903-1911年著書闡述理念。 • 科學管理基本原理 • 以科學方法,尋求最佳工作方式。 • 以科學方法選用訓練工人。 • 增加工人個人績效,提高工資激勵工人,增進生產能力,降低產品成本。 • 工作劃分,促使管理階層與員工相互依賴。
科學管理是人員與工作間關係之哲學,並非僅強調技術或效率 。 • 科學管理之基本理念-兼顧適當之工作設計, 並且關心員工。 • 科學管理曾被誤解為僅為增加產量,而實施非人性之做法-1912年曾遭國會調查。
其他科學管理先驅 • Henry Gantt • 成就:生產管制及甘特圖 。 • 倡言:管理階層及企業之社會責任 。 • Frank and Lillian Gilbreth • 成就: • Frank:動作研究(Motions Study)及工作方法(Work Method)研究 。 • 細分人體動作為基本動作-Therblig • 無效運動刪除或減少,有效運動改善或加強。 • Lillian:管理心理學 • 培育而非壓抑員工。
Henri Fayol (法國人) • 1888年接掌一瀕臨破產之煤礦及鋼鐵公司,使之財務健全,聲譽卓著。 • 1916年出版工業及一般性管理(Administration Industrielle et Generale) ,1930年譯成英文 ,1950年方廣為流傳,管理界公認之經典著作。 • 1918退休,演講推展其管理理論。 • 討論管理原則及構成要素。 • 將管理理論用於政府部門 。 • 強調組織管理。 (Taylor強調作業活動管理) • 管理程序理論之父 • 列舉管理要素為 • 計畫 • 組織 • 命令 • 協調 • 控制
確定十四項管理原則 (運用時保持彈性,環境不同,限制不同) • 分工:工作專業化 • 授權:正式對個人授權 • 紀律:基於服從及尊敬 • 命令一致:每一位員工僅能從一位上司處接獲命令 • 指揮統一:同一作業團體僅有一位領導者及一份計畫和相同目標 • 個人利益置於團體利益之下 • 報酬:薪資支付決定於多項因素 • 集權:集權程度取決於授權情形及正式之溝通管道 • 授權階級鏈:顯示授權之層級關係及正式之溝通管道 • 秩序:確保每一事件皆能定位 • 公平:仁慈及公正 • 人事穩定:須有條理之人事規劃 • 自動自發:對所有工作均需發揮個人 之熱誠及活力 • 團隊精神:組織中需塑造和諧一致之氣氛
管理科學(Management Science) • 科學管理只能應用於生產任務上 • 目的在獲得人與機器之效率-解決工作階層之工作問題。 • 無法解決決策階層之決策問題。 • 決策錯誤,效率愈高,愈是不利。 • 二次大戰後,由於電子計算機之發明,數學和統計之演進,步入管理科學時期。 • 管理科學 • 為一種解決問題之技術,如系統分析(S.A.)及作業研究(O.R.) 。 • 主要用在決策程序。
科管概論 • 科技管理是一個組織為了達成策略及運用目標,整合工程、科學和管理的專業學問,用以計畫、開發和建立組織中的科技能力。 • 產業界所探討的幾個主要課題是 • 技術的預測與影響評估 • 研究發展的管理 • 技術與企業整體營運之整合 • 新科技在產品和製程中之實行 • 技術的淘汰和取代
產業界對科技管理的主要需求,包括以下幾方面產業界對科技管理的主要需求,包括以下幾方面 • 如何將技術與公司整體上長期目標整合 • 如何更快和更有效率地引入或移出技術 • 如何更有效率地去評估或評價技術 • 如何完美地完成技術移轉 • 如何縮短新產品的開發時間 • 如何管理大型、複雜、跨領域或跨組織的專案或系統 • 如何管理組織內部的技術應用 • 如何提昇技術人員的效能
科管發展重點 • 探討知識與技術密集產業中的經營管理課題: • 知識與技術密集產業,大多具有技術快速進步、市場變化快、產品生命週期短等特性,使得該等產業所面臨的經營課題,如策略、組織、行銷、人事、研發、財務等,皆與傳統產業有所不同,需系統性之研究,以建立新的經營典範。
這些新興課題包括: • 創造力培養 • 技術與研發管理 • 技術預測與評估 • 技術移轉與貿易 • 風險投資 • 知識管理 • 創新管理 • 智慧財產權 • 政府科技政策 • 科技、人文與環保
探討社會體系中各個層次的創新課題: • 如何形成塑造一個良好的創新環境,是未來經濟發展的關鍵。 • 創新相關課題均值得深入檢討,形成新的理論。這些課題包括: • 國家與區域層次的「創新環境與政策」 • 產業與企業層次的「新興科技產業與經營策略」 • 產品與技術層次的「創新組織與技術管理」等。
The development process in system engineering • The term system engineering dates back to Bell Telephone Laboratories in the early 1940s. • The first attempt to teach systems engineering as we know it today came in 1950 at MIT by Mr.Gilman, Director of System Engineering at Bell.
The Department of Defense entered the world of system engineering in the late 1940s with the initial development of ballistic missiles and missile-defense systems. • The RAND Corporation was founded in 1946 by the United Air Force and created system analysis, which is an important part of system engineering.
Introduction to System Engineering • System Engineering – the orderly process of bringing a system into being. • A system constitutes a complex combination of resources( in the form of human beings, materials, equipment, software, facilities, data, etc.)
A system is developed to accomplish a specific function. • A system may be broken down into subsystems and various smaller components.
The Current Environment • The complexity of systems is increasing. • New technologies are being introduced on a continuing basis, while the life cycles for many system are being extended.
Increasing System Complexities Constantly Changing Requirements Eroding Industrial Base Dwindling Resources The Current Environment Higher overall costs Changing Technology Extended System Life Cycles Longer Acquisition Time Greater International Competition Multiple Prime/Supplier Teams
The overall requirements for the system in question were not well defined from the beginning. • Traditionally, engineers do not want to be forced into design-related commitments any earlier than necessary. • There are a lot of last-minute changes in the design. Theses changes are actually incorporated at a later stage, which can be quite costly.
Current practices Cost of design changes Desired practices Conceptual design Preliminary design Detail design and development Production and/or construction Major program phases The cost impact due to changes
The complexities of many systems have been greater. • With the ever-increasing emphasis on performance at the sacrifice of other key design parameters such as reliability and quality, the overall effectiveness of these systems has been decreasing and the costs have been going up.
High life-cycle cost Low system effectiveness • Research, design, and development cost • Construction cost • Production cost • System operation cost • Maintenance and support cost • Retirement, material recycling, and disposal cost • System performance • Availability, dependability, reliability, maintainability, humanability, and supportability • Constructability and producibilty • System quality • Disposability • Other technical factors The imbalance between system cost and effectiveness factors
There is a lack of total cost visibility. • For many systems, design and development costs are relatively well known. • The costs associated with system operation and maintenance support are somewhat hidden. • Decisions made during the early phases of system development can have a great impact on total life-cycle cost.
Acquisition costs (research, design, test construction, production) Costs due to system operations Costs due to maintenance and life-cycle support (personnel, spares, test equipment, facilities, data, computer resources) Costs due to system effectiveness and/or performance losses Costs due to retirement (material recycling or disposal Total cost visibility-iceberg effect
Projected life-cycle cost(cumulative) 100% Life-cycle cost-reduction opportunity Percent of life-cycle cost Actual program expenditures System design and development Production and/or construction System utilization and sustaining support Commitment of life-cycle cost
Constraints • Technology • Economic • Social • Political • Environmental System • Transportation • Communications • Manufacturing plant • Power distribution • Information processing • Water reuse and distribution • Waste disposal • Satellite/space • University/college • Chemical processing plant • Office complex • Electrical, electronic, mechanical • Other functional entities Output Input Identification of consumer requirement; i.e., need A system that will respond to a consumer need in an effective and efficient manner Mechanisms (resource requirements) • Human(people) • Equipment/software • Facility/Data • Materials • Maintenance Support The system
Prime operating equipment Operating software Operating personnel Technical training Consumable resources Test and support equipment Transportation and handling equipment The system Maintenance software Maintenance personnel Technical data Maintenance data Maintenance facilities Supply support (spares/inventories) Other elements The major elements of a system
Transportation system Vehicular system Waterway system Airplane system Automobile Transmission Electrical Fuel The hierarchy of systems
The System Life Cycle • The life cycle includes the entire spectrum of activity for a given system. • Needs may change. • Obsolescence may occur. • The various phase of activity may overlap somewhat.
Identified need Production and/or construction Operational use and maintenance support Retirement and material disposal Design and development Feedback The system life cycle
System life cycle Preliminary system design Detail design and development Conceptual design System operations (consumer use) System retirement Production Production capability Design Utilization System support capability Design Utilization(consumer maintenance) Example of system life cycles (Airplane,ground transportation,electronic device)
System life cycle Preliminary system design Detail design and development Construction of physical plant Conceptual design Production operations (system operational use) System retirement System support capability Design Utilization(consumer maintenance) Example of system life cycles (Manufacturing plant, chemical processing plant, satellite ground tracking facility)
System Engineering • Broadly defined, system engineering is the effective application of scientific and engineering efforts to transform an operational need into a defined system configuration through the top-down iterative process of requirements analysis, functional analysis, and allocation, synthesis, design optimization, test and evaluation and validation.
The system engineering process is continuous, iterative, and incorporate the necessary feedback provisions to ensure convergence. • System engineering involves the efforts pertaining to the overall design and development process employed in the evolution of a system from the point when a need is first identified, through production and/ or construction and the ultimate installation of that system for consumer use. • The objective is to meet the requirements of the consumer in an effective and efficient manner.
Area of emphasis System retirement and material disposal System requirements Feedback Full-scale production,system utilization,maintenance and support system evaluation Functional analysis and requirements allocation Design integration component acquisition, test and evaluation Startup and early production,system evaluation Construction and installation of capital assets Top-down/bottom-up system development process
Compare test data with requirements and objectives Define the system requirements Test the system Actual characteristics Interface control Measured characteristics Developed physical system Understand the objectives Consider alternative configurations Choose the best configuration Design the system Accomplish system integration Identified need Update system characteristics and data Feedback in the system engineering process
The integration of the hardware, software, and human life cycle
Evolution of design Design requirements (criteria) Design tasks/methods System design (System configuration) Preliminary design (Configuration item level) Detail design and development Developmental test and evaluation Production and/or construction The top-down trace-ability of requirements
DEFINITIONS OF SYSTEMS ENGINEERING • MIL-STD-499A [1974]defines systems engineering as: The application of scientific and engineering efforts to • transform an operational need into a description of system performance parameters and a system configuration through the use of an iterative process of definition, synthesis, analysis, design, test, and evaluation;
integrate related technical parameters and ensure compatibility of all physical, functional, and program interfaces in a manner that optimizes the total system definition and design; • integrate reliability, maintainability,safety,survivability, human engineering, and other such factors into the total engineering effort to meet cost, schedule, supportability, and technical performance objective.