240 likes | 432 Views
政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001), Undergraduate Econometrics . New York: John Wiley & Sons 日期: 2011 年 5 月 12 日. 非線性模型. 第一類模型 : 變數為非線性的,但未知參數是線性的。
E N D
政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目:Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001), Undergraduate Econometrics. New York: John Wiley & Sons 日期:2011年5月12日 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
非線性模型 • 第一類模型: 變數為非線性的,但未知參數是線性的。 • Y=αLβK γ lnY=δ+βln(L)+γln(K) 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
多項式和互動變數 • 迴歸模型中的斜率為連續性的變化。 • TC=α1+α2Q+α3Q2+α4Q3+e • PIZZA=β1+β2AGE+β3Y+e • = β2 :在某一個所得水準之下,預期比薩的支出會隨著年齡增加一歲而變動 β2的量。 PIZZA AGE 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
PIZZA Y • = β3 :在某一年齡之下,所得每增加$1預期比薩支出會增加β3。 • 例: 隨著一個人年齡的增長,他們對於比薩的邊際偏好會減少。 這是一個所得的影響決定於年齡的例子 AGE × Y PIZZA=β1+β2AGE+β3Y+β4(AGE×Y) +e 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
E(PIZZA) AGE • =β2+β4 Y AGE的影響取決於所得。 • =β3+β4 Age • 受到所得影響下預期比薩的支出,則決定於AGE。 E(PIZZA) Y 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
下列兩條式子有何不同 • Pizza=342.8848***-7.5756***AGE+0.0024***Y • Pizza=161.4654-2.9774AGE+0.0091**Y-0.00016**(Y×AGE) • AGE 本身不再是個顯著的解釋因素。 • 這表示AGE會透過與所得的互動來影響比薩的支出---也就是它會影響比薩的邊際支出傾向 估計 AGE 的邊際影響 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
異質變異(Heteroskedasticity) 問題: 放寬這個假設: 然後我們稱這樣的情形為異質變異 在使用橫斷面換資料(cross-sectional data)時常會遇到變異數不同或質變異性,這樣的情形也同樣會發生在時間序列資料(time-series data)。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
異質變異對最小平方估計式的影響 • 最小平方估計式仍然是線性且不偏的估計式,但它不再是最佳線性不偏估計式(BLUE)。 • 通常以最小平方估計式所計算出的標準誤是不正確的。使用這些不正確的標準誤會誤導假設檢定。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
檢測異質變異性 • 1.殘差圖(Residual Plots) • 如果誤差是同質變異的,在殘差裡不應該會有任何種類的類型(patterns)。 • 然而,當我們有一個以上的解釋變數時 ,估計的最小平方函數不容易被畫在一張圖上。 • 我們可以做的是畫出最小平方殘差相對於各解釋變數的圖。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
2. The Goldfeld-Quandt 檢定 • H0: homoskedasticity • a. 將樣本分為大小大約相等的兩個子樣本。 若我們相信變異數與 Xt 有關,則應根據Xt 大小將觀察值分為兩類。 • b. 計算每個子樣本的估計誤差變異數 及 。若兩個樣本之變異數相同的虛無假設不是真的, 那麼預期 會很大。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
c. 計算 GQ= • 若 GQ>Fc (T1-K, T2-K) • 拒絕變異數相同的虛無假設 • 若樣本一分為二, 則T1=T2=T /2。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
經由模型轉換的一般化最小平方 (1) i=1,…,13 • 一般化最小平方 (2) i=14,…,26 , for i=1,…13 , for i=14,…,26 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
, 然後計算 , • ∴ 估計 LSE (1)(2) 可得到 , 其中 σj不是 σ1就是 σ2 , 決定於選取的那一半觀察值。 然後應用最小平方在轉換整個變數 檢定變異數假設 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
自我相關( Autocorrelation) • 橫斷面資料(Cross-section data):隨機樣本 誤差項彼此間互不相關。 • 時間序列資料(Time-series data): 相鄰發生的誤差是有可能會彼此相關。 • 當相鄰發生的誤差項互為相關時, 稱為自我相關(autocorrelation)。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
for t≠ s 自我相關 for t≠ s but if 例: R2=0.706 (0.169) (0.111) (SE) 從課本的表和圖中可知:負的殘差值傾向於跟隨負的殘差值,而正的殘差值則傾向於跟隨正的殘差值。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
一階自我迴歸誤差 • 一階自我迴歸模型 AR(1) for t≠ s 若ρ 由前一期帶到下一期的影響越大,衝擊擴散的速度也越慢。 AR(1) 誤差的統計性質 (1)-1<ρ<1,若 >1 Then will ∞ , as t ∞ (2)E(et )=0 et也是同質變異的,因為σe2不隨時間而改變。 (3) 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
k>0 因為 <1 ∴ As t ∞ • (4) 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
對最小平方估計式的影響 • 一個具有自我相關的方程式,若是忽略或沒有察覺到這一點,就會發生下列情形: • 最小平方估計式仍然是線性不偏估計式,但它不再是最佳的。 • 最小平方估計式的標準誤不再是正確的 使用這些標準誤會誤導假設檢定。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
一般化最小平方(GLS)會比最小平方提供給我們一個更窄、可透露多資訊的信賴區間。一般化最小平方(GLS)會比最小平方提供給我們一個更窄、可透露多資訊的信賴區間。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
只計算 (T-1)個變數,忽略第一個觀察值≠>不偏 • 估計 ρ • 轉換第一個觀察值 先估 然後重新估計 β0,β1 => 在考慮 AR下。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
自我相關的檢定 H0:ρ= 0,H1:ρ> 0 • Durbin Watson 檢定 • The Bound Test dLc < d < dUc 若 d < dLc拒絕 H0: ρ= 0 ,接受 H1:ρ> 0 若 d > dUc 無法拒絕 H0: ρ= 0 若 dLc < d < dUc這個檢定是不具決定性的。 T=34 (觀察值個數) K=2(參數個數) β0、β1 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
Lagrange 乘數檢定 (Lagrange Mulitipler Test) • H0: ρ= 0 , H1:ρ≠0 • 若 DW 檢定與 LM 檢定不一致時? • DW 檢定導致型I錯誤。 • LM 檢定導致型II錯誤。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
注意: 1.Yt=β0+β1X1+ρet-1+νt,但 t=1,……,T e0=? (1)設定 e0=0 (2)忽略 e0 2.DW 檢定在有限樣本的情況下較精確。 LM 檢定適用在近似於大樣本的情況下。 3.若其中一個解釋變數為延遲變數Yt-1,則不適合用DW檢定。但LW檢定仍然可以用在這種情形之下。 4.在越多時間延遲的情況下,更適合用LM檢定。 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰
用AR(1)誤差做預測 • YT+1=β0+β1XT+1+eT+1 • YT+1=β0+β1XT+1+ρeT+νT+1 + 若我們假設 XT+h=value 則我們就可以預測 h 期! 政治大學國務院國安碩專班選修課-- 社會科學研究方法(量化分析)--黃智聰