130 likes | 437 Views
We are developing a New Automatic Scoring Algorithm! Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram Collaborating with Osaka Bioscience Institute, Japan. Sleep Analysis Software SleepSign for Animal.
E N D
We are developing a New Automatic Scoring Algorithm! Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram Collaborating with Osaka Bioscience Institute, Japan Sleep Analysis SoftwareSleepSign for Animal KISSEI COMTEC Co., LTD. ( JAPAN )
Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram Sayaka Kohtoh,1 Yujiro Taguchi,1 Masashi Wada,2 Naomi Matsumoto,2 Zhi-Li Huang,2 and Yoshihiro Urade2 1Department of Medical Systems, Kissei Comtec Co., Ltd., Nagano, and 2Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka, Japan Sleep Biological and Rhythms Volume 6 Number 3 July 2008 Accepted
A top notch research institute dedicating to the sleep mechanism • Ranked as having one of the highest ratios of scientific Papers citing in the world • Discovered Prostaglandin D2 in 2002 • An introduction of OBI appeared in ASBMB (October 2006, P10~12 ) http://www.obi.or.jp/ Joint project withOsaka Bioscience Institute (OBI), Japan
Advantages • We selected 4 parameters EEG δ power , EEG θ / (δ+θ) ratio , EMG integral , Activity • Percent agreement 90.9 ± 4.0%for rats ,90.0 ± 3.2%for mice • Processing speed is 1/6 of the existing version • Multiple animals are scored at once
Activity EEG EMG Integral Fast Fourier Transform Scoring Logic Wake Non REM REM New Automatic Scoring Algorithm
Active wake Quiet wake REM sleep NREM sleep EEG EMG LOC rat FFT spectrum EEG EMG mouse LOC FFT spectrum Typical waveform and FFT spectrum
REM EEG q/(d+q) ratio (%) rat Non REM Wake NonREM REM REM Non REM mouse EEG q/(d+q) ratio (%) EEG d power (mV2) EMG integral (mV/sec) 3 parameters to separate NREM, REM, and Wakefulness
EEG δ wave Locomotor Locomotor EEG θ wave Step : 1 Activity ? No Yes EEG EMG Step : 2 Active Wake High EEGdpower ? No Yes EEG / EMG Step : 3 High EEG θ ratio and High EMG Integral NREM Sleep Yes W R No NR REM Sleep Quiet Wake Hypnogram Scoring Logic
rat Light phase Dark phase Locomotion activity (count) EEG d power (mV2) EEG q/(d+q) ratio(%) EMG integral (mV/sec) W R NR 12:00 14:00 16:00 24:00 02:00 04:00 Clock time Time courses of parameters and hypnogram
mouse Light phase Dark phase Locomotion activity (count) EEG d power (mV2) EEG q/(d+q) ratio(%) EMG integral (mV/sec) W R NR 14:00 16:00 18:00 22:00 24:00 02:00 Clock time Time courses of parameters and hypnogram
% % Percent agreement between FFT algorithm and visuals
250 4 hr 200 Processing time in pooled 24hr-data from 8rats(min) 1 / 6 150 1 / 80 100 50 40 min 3 min 0 Processing time
SD Rat_1 Control SD Rat_2 SD Rat_1.csv SD Rat_2.csv SD Rat_3.csv SD Rat_4.csv SD Rat_3 SD Rat_4 After Scoring : Quick Report Making in Excel