1 / 38

KREEKA TORU Ελληνική σωλήνα (Hellase soolikas) Hannes Tammet 14 . jaanuar 2015

KREEKA TORU Ελληνική σωλήνα (Hellase soolikas) Hannes Tammet 14 . jaanuar 2015. The Cavendish Laboratory is the Department of Physics at the University of Cambridge , and is part of the university's School of Physical Sciences. It was opened in 1874 as a teaching laboratory.

mattiecruz
Download Presentation

KREEKA TORU Ελληνική σωλήνα (Hellase soolikas) Hannes Tammet 14 . jaanuar 2015

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KREEKA TORU Ελληνική σωλήνα (Hellase soolikas) Hannes Tammet 14. jaanuar 2015

  2. The Cavendish Laboratory is the Department of Physics at the University of Cambridge,and is part of the university's School of Physical Sciences. It was opened in 1874 as a teaching laboratory. The Department is named to commemorate British chemist and physicist Henry Cavendish for contributions to science and his relative William Cavendish, 7th Duke of Devonshire, who served as Chancellor of the University and donated money for the construction of the laboratory. Professor James Clerk Maxwell, the developer of electromagnetic theory, was a founder of the lab and became the first Cavendish Professor of Physics.In 1884-1919Joseph John Thomsonwas Cavendish Professor of Physics. One of his students Ernest Rutherford, succeeded him in the post. As of 2011, 29 Cavendish researchers have won Nobel Prizes. JJ Thomson andis Tasmaaniast päritolu Ernest Rutherford’ile ja Ameerika Tšehhi kogukonnast pärit John Zeleny’le ülesandeks mõõta ära ioonide liikuvused õhus. Rutherfordi rajas vahelduvvoolu meetodi ja Zeleny rajas aspiratsioonimeetodi kaks versiooni, need on ristkiiruste meetod ja vastuvoolu ehk pikivälja meetod.

  3. Zeleny, J. (1898). On the ratio of the velocities of the two ions produced in gases by Röntgen radiation, and on some related phenomena. Philos. Mag. 46:120–154.

  4. John Zeleny Born: March 26, 1872 (Racine, Wisconsin) Died: June 19, 1951 (New Haven, Connecticut) Education 1892: BS, University of Minnesota 1897: University of Berlin 1899: BA, Cambridge University 1906: PhD, University of Minnesota (Physics) Major Positions 1892–1896: University of Minnesota, Instructor in Physics 1896–1900: University of Minnesota, Assistant Professor of Physics 1900–1908: University of Minnesota, Associate Professor of Physics 1908–1915: University of Minnesota, Professor of Physics 1915–1940: Yale University, Professor of Physics 1940–1951: Yale University, Emeritus Professor of Physics Other Positions 1912–1913: University of Minnesota, Acting Dean, Graduate School 1940–1940: American Physical Society, President 1941–1943: Yale University, Lecturer in Physics

  5. Ristkiiruste meetod:

  6. 1998:

  7. 1898:

  8. 1999: Kaldvälja realiseerimine läbipuhutavate võrede abil

  9. IGMA

  10. Richard C. Flagan (2004) Opposed Migration Aerosol Classifier (OMAC)

  11. 2014:

  12. Journal impact factor 3.16

  13. George Biskos kaitses PhD 2004 aastal Cambridges 03. novembril esitati käsikiri, mida hindasid 3 toimetajat ja 3 retsensenti. 22. detsembril artikkel aktsepteeriti, 31. detsembril ilmus online väljaandes, 07. jaanuaril esitati tsiteeriv käsikiri: Tsükkel 2 kuud ja 4 päeva

  14. Varasemates pikivälja kasutatavates seadmetes kas: • puudus analüüsitavate osakeste sisse- ja väljavool (Zeleny) • või elektriväli ja õhuvool ei olnud täpselt paralleelsed. • Õhuvool pidi läbima metallvõrgust, poorsest metallist või ribidest elektroode. • Lennuteeaparaatides kasutati tülikat rõngaselektroodide süsteemi. • Bezantakos jt. realiseerisid pikivälja meetodi • odava poolisolaatortoru abil, • vältisid võresid ja elektroode, • suunasid elektrivälja toru teljel õhuvooluga täpselt paralleelselt.

  15. Plug flow Hagen-Poiseuille flow The hydrodynamic entry length can be roughly estimated about 68Qlpm mm, where Qlpm is the value of volumetric flow rate expressed in lpm.

  16. Kontsentratsiooni jäävuse lause If the inertia of particles and Brownian random walk are ignored, then velocity vp of a charged particle with electric mobility Z is the sum of the air flow velocity u and the electric drift velocity: vp = u + EZ,where E is the strength of the electric field. The change of particle concentration c around a particle, which is carried along its trajectory in laminar air flow and electric field, is dc / dt = –c div vp. Thus the change of particle concentration along the particle trajectory in the electric field is proportional to div vp = div u + Z div E. If the air in the aerosol filter is expected to be incompressible then div u = 0, and if the effect of the space charge generated field is negligible then div E= 0. We will accept these two assumptions and base the mathematical model on the convention div vp = 0. It follows that the concentration of monomobile charged particles is conserved along every particle trajectory(Levin, 1957; Tammet, 1960, 1970).

  17. õhuvoolu kiirus toru teljel vastuvälja tugevus else PPoiseuille = 0 if then Piirliikuvus: The particle current carried through the middle part of the decelerating segment along the trajectories inside the bundle is

  18. Reduced mobility = Z/Z1/2 where Z1/2= half-pass mobility

  19. 500000 trajectories with time step of 0.05 ms

  20. Mis jääb köögipoolele: • Analüütiline lahendamine • Elektrivälja numbriline arvutamine • Trajektooride arvutamine • Diagrammide tegemine • Jätkatud toru parameetrite valimine

  21. Thank You!

More Related