1 / 28

Spin Susceptibility of a 2D Electron Gas

Spin Susceptibility of a 2D Electron Gas. M. Reznikov. Sasha Kuntsevich, Nimrod Teneh, V ladimir. Pudalov, Teun Klapwijk Aknowl eg ments: A. Finkelstein. Metal-Insulator Transition in a Silicon Inversion Layer. V. Pudalov at al., 2001. Motivation.

mattox
Download Presentation

Spin Susceptibility of a 2D Electron Gas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spin Susceptibility of a 2D Electron Gas M. Reznikov Sasha Kuntsevich, Nimrod Teneh, Vladimir. Pudalov, Teun Klapwijk Aknowlegments: A. Finkelstein

  2. Metal-Insulator Transition in a Silicon Inversion Layer V. Pudalov at al., 2001

  3. Motivation • Theory: interaction and disorder enhanced susceptibility • A. Finkelstein (1983), Castellani at al.,(1984) • Temperature-dependent correction to Pauli Susceptibility due to electron-electron interaction (A. Finkelstein, A. Shekhter, 2006) A. Chubukov, D. Maslov,2009

  4. Shubnikov - de Haas measurements of the Spin Polarization 2 6 7 4 rs F. Fang and P. Stiles, (1968), T. Okamoto at al., (1999) S. Vitkalov at al. (2000), V. Pudalov at.al., (2001) Advantages Disadvantages • Straightforward separation between • orbital (diamagnetic) and spin contributions • Requires low temperatures and finite • magnetic fields (B B>kBT) • Problematic in the vicinity of the MIT

  5. Analysis of the in-plane magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001 • Advantages: • Does not require high magnetic field • Critical density is accessible • Disadvantages: • Heavily interpretation-dependent: • a) Saturation of the in-plane magnetoresistance • full polarization • incorrect atlow B (e.g E. Tutuc at al.) • b) The saturation field may be recovered on the basis of the low field magnetoresistance

  6. In-plane magnetoresistance A. Shashkin et al. PLR, 2001, S. Vitkalov et al. PRL 2001

  7. Samples Si Field effect transistors Russian samples, beginning of 80th, Holland samples, mid 80th, ¼3.4 x104 cm2/Vs @1.7K Typical energy scales p¼ 3 ps¼~/(kB¢ 2K)

  8. ef W2D m WAl eVG e0 The Principle of the Measurements Maxwell relation:

  9. Modulated magnetic field B+dB Current Amplifier + Gate VG _ Out SiO2 Ohmic contact Si 2D electron gas Experimental setup Advantages Disadvantages • Measures thermodynamic magnetization • Accessibility of the “Insulating phase” • Does not require low temperatures • Measures thermodynamic magnetization • Measures , which is unknown • at small n; Requires assumptions for the • integration

  10. dm/dn, expectations for degenerate caseno interactions m gmBB Polarization field B

  11. dm/dn, expectations for a single spin

  12. Raw data, low fields

  13. Raw data

  14. d/dn(n), T=1.7¥13K, Russian sample

  15. d/dn(n), Holland sample

  16. Problem O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, PRB 2003: Assumption: at large density the susceptibility is the renormalized Pauli one This assumption happened to be wrong!

  17. (n), T=1.7¥ 13K

  18. (n), T=1.7¥ 13K, offset 0.7V offset 0.7V offset 0.5V

  19. Old results (Prus et al, 2003)

  20. Susceptibility vs. Temperature

  21. Field dependence of the magnetic moment

  22. Susceptibility in at B=2T

  23. Maximal magnetization @ 1.7K

  24. Raw data

  25. -dM/dn at 1.5 1011 cm-2 B

  26. Comparison with Transport Measurements

  27. Conclusions • Low-field susceptibility is many times the Pauli one • Susceptibility is strongly temperature dependent • even at high densities (most surprising) • Low temperature susceptibility is strongly nonlinear • The field scale for the nonlinearity is Bc¼ kBT/6B

  28. ТД измерения: ранние результаты. A. Shashkin et al., PRL 96 036403 (2006). Порядок величины! (n=0.3 Гц) Образец закрывается при малых n ВЫВОД О ФМ НЕУСТОЙЧИВОСТИ; (B>1.5 Т, Т<0.6К) НЕТ ЗАВИСИМОСТИ ВОСПРИИМЧИВОСТИ ОТ Т.

More Related