1 / 21

طراحی مدارهای منطقی

طراحی مدارهای منطقی. دانشگاه آزاد اسلامی واحد پرند. نیمسال دوم 92-93. طراحی مدارهای منطقی. دانشگاه آزاد اسلامی واحد پرند. بهینه سازی مدارهای منطقی: جدول کارنو. Optimization. Algebraic procedures problems The procedures are difficult to apply in a systematic way

mauve
Download Presentation

طراحی مدارهای منطقی

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. طراحی مدارهای منطقی دانشگاه آزاد اسلامی واحد پرند نیمسال دوم 92-93

  2. طراحی مدارهای منطقی دانشگاه آزاد اسلامی واحد پرند بهینه سازی مدارهای منطقی: جدول کارنو

  3. Optimization • Algebraic procedures problems • The procedures are difficult to apply in a systematic way • It is difficult to tell when you have arrived at a minimum solution • Karnaugh map (For 3 and 4 variables) • Quine-McCluskey

  4. Optimization • Costdirectly related to  The number of gates & Gate inputs used

  5. Optimization • Karnaugh • Minimum cost two-level circuits composed of AND and OR gates • SOP: a group of AND gates feeding a single OR gate • POS:a group of OR gates feeding a single AND gate • Minimum SOP/POS  • has minimum number of terms (Minimum number of gates) • has minimum number of literals (minimum number of gate inputs)

  6. Karnaugh Map • Karnaugh map of a function • Specifies the value of the function for every combination of values of the independent variables • Like Truth table • Terms near each other with one bit difference • Maximum terms in one group (2,4,8,… terms) • Minimum groups

  7. Karnaugh Map (2-variable)

  8. Karnaugh Map (3-variable)

  9. Karnaugh Map (3-variable)

  10. Karnaugh Map (3-variable)

  11. Karnaugh Map (3-variable) • Provingboolean algebra equations  Consensus theorem

  12. Karnaugh Map (3-variable) • Minimized SOP  Not unique

  13. Karnaugh Map (4-variable)

  14. Karnaugh Map (4-variable)

  15. Karnaugh Map (4-variable) • With Don’t cares • Group X’s if they simplify the function

  16. Karnaugh Map (4-variable) • POS extraction

  17. Karnaugh Map (EPI) • Using PIs and EPIs • Implicant • Prime Implicant (PI) • Essential Prime Implicant (EPI)

  18. Karnaugh Map (EPI) • In the process of finding PIs: • don’t-cares are treated just like 1’s • Note  PI composed entirely of X’s can never be part of the minimum solution

  19. Karnaugh Map (EPI)

  20. Karnaugh Map (EPI)

  21. Karnaugh Map (5-variable)

More Related