250 likes | 360 Views
Momentum and Collisions. Dr. Robert MacKay. Clark College, Physics. Introduction. Review Newtons laws of motion Define Momentum Define Impulse Conservation of Momentum Collisions Explosions Elastic Collisions. Introduction. Newtons 3 laws of motion 1. Law of inertia
E N D
Momentum and Collisions Dr. Robert MacKay Clark College, Physics
Introduction • Review Newtons laws of motion • Define Momentum • Define Impulse • Conservation of Momentum • Collisions • Explosions • Elastic Collisions
Introduction • Newtons 3 laws of motion • 1. Law of inertia • 2. Net Force = mass x acceleration • ( F = M A ) • 3. Action Reaction
Law of interia (1st Law) • Every object continues in its state of rest, or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed upon it. • acceleration = 0.0 unless the objected is acted on by an unbalanced force
Newton’s 2nd Law • Net Force = Mass x Acceleration • F = M A
Newton’s Law of Action Reaction (3rd Law) • You can not touch without being touched For every action force there is and equal and oppositely directed reaction force
Newton’s Law of Action Reaction (3rd Law) Ball 1 Ball 2 F2,1 F1,2 F1,2 = - F2,1 For every action force there is and equal and oppositely directed reaction force
Momentum , p • Momentum = mass x velocity • is a Vector • has units of kg m/s
Momentum , p (a vector) • Momentum = mass x velocity • p = m v • p = ? 8.0 kg 6.0 m/s
Momentum , p • Momentum = mass x velocity • p = m v • p = 160.0 kg m/s 8.0 kg V= ?
Momentum , p • Momentum is a Vector • p = m v • p1 = ? p2 = ? V= +8.0 m/s m1= 7.5 kg m2= 10.0 kg V= -6.0 m/s
Momentum , p • Momentum is a Vector • p = m v • p1 = +60 kg m/s p2 = - 60 kg m/s V= +8.0 m/s m1= 7.5 kg m2= 10.0 kg V= -6.0 m/s
Momentum , p • Momentum is a Vector • p = m v • p1 = +60 kg m/s p2 = - 60 kg m/s • the system momentum is zero., V= +8.0 m/s m1= 7.5 kg m2= 10.0 kg V= -6.0 m/s
Newton’s 2nd Law • Net Force = Mass x Acceleration • F = M a • F = M (∆V/∆t) • F ∆t = M ∆V • F ∆t = M (VF-V0) • F ∆t = M VF- M V0 • F ∆t = ∆p Impulse= F∆t • The Impulse = the change in momentum
Newton’s 2nd Law • Net Force = Mass x Acceleration • F ∆t = ∆p Impulse= F ∆t • The Impulse = the change in momentum
Newton’s Law of Action Reaction (3rd Law) Ball 1 Ball 2 F2,1 F1,2 F1,2 = - F2,1 For every action force there is and equal and oppositely directed reaction force
Newton’s Law of Action Reaction (3rd Law) Ball 1 Ball 2 F2,1 F1,2 F1,2 = - F2,1 F1,2∆t = - F2,1 ∆t ∆p2 = - ∆p1
Conservation of momentum Ball 1 Ball 2 F2,1 F1,2 If there are no external forces acting on a system (i.e. only internal action reaction pairs), then the system’s total momentum is conserved.
“Explosions”2 objects initially at rest • A 30 kg boy is standing on a stationary 100 kg raft in the middle of a lake. He then runs and jumps off the raft with a speed of 8.0 m/s. With what speed does the raft recoil? V=8.0 m/s after V=? M=100.0 kg M=100.0 kg before
“Explosions”2 objects initially at rest V=8.0 m/s • A 30 kg boy is standing on a stationary 100 kg raft in the middle of a lake. He then runs and jumps off the raft with a speed of 8.0 m/s. With what speed does the raft recoil? after V=? M=100.0 kg M=100.0 kg before p before = p after 0 = 30kg(8.0 m/s) - 100 kg V 100 kg V = 240 kg m/s V = 2.4 m/s
Explosions If Vred=9.0 m/s Vblue=? 9.0 m/s
Explosions If Vred=9.0 m/s Vblue=3.0 m/s 9.0 m/s 3.0 m/s
“Stick together”2 objects have same speed after colliding • A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? V=8.0 m/s V=? M=100.0 kg M=100.0 kg before after
“Stick together”2 objects have same speed after colliding • A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? V=8.0 m/s V=? M=100.0 kg M=100.0 kg before after p before = p after 30kg(8.0 m/s) = 130 kg V 240 kg m/s = 130 kg V V = 1.85 m/s
“Stick together”2 objects have same speed after collidingThis is a perfectly inelastic collision • A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? V=8.0 m/s V=? M=100.0 kg M=100.0 kg before after