1 / 97

S.O.L.R.E.V.I.E.W - Geometry SOLs in Review

Review of conditional statements, parallel lines and angles, proving congruent triangles, and angles of regular polygons. Includes formulas and methods for solving geometry problems.

mavelar
Download Presentation

S.O.L.R.E.V.I.E.W - Geometry SOLs in Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. S O L R E V I E W THE GEOMETRY SOLs ( in review ) Use the arrow keys  to move forward or backward.

  2. S O L R E V I E W Conditional Statements “ If p then q. ” Converse: Inverse: Contrapositive: The Law of Syllogism =

  3. S O L R E V I E W Conditional Statements “ If p then q. ” Converse: “ If q then p. ” Inverse: Contrapositive: The Law of Syllogism =

  4. S O L R E V I E W Conditional Statements “ If p then q. ” Converse: “ If q then p. ” Inverse: “ If - p then - q. ” Contrapositive: The Law of Syllogism =

  5. S O L R E V I E W Conditional Statements “ If p then q. ” Converse: “ If q then p. ” Inverse: “ If - p then - q. ” Contrapositive: “ If - q then - p. ” The Law of Syllogism =

  6. S O L R E V I E W Conditional Statements “ If p then q. ” Converse: “ If q then p. ” Inverse: “ If - p then - q. ” Contrapositive: “ If - q then - p. ” The Law of Syllogism The Transitive Property =

  7. S O L R E V I E W for two points (X1 , Y1 ) and ( X2 , Y2 ) Formulas: Slope= Midpoint= Distance=

  8. S O L R E V I E W for two points (X1 , Y1 ) and ( X2 , Y2 ) Formulas: Slope= Midpoint= Distance=

  9. S O L R E V I E W for two points (X1 , Y1 ) and ( X2 , Y2 ) Formulas: Slope= Midpoint= Distance=

  10. S O L R E V I E W for two points (X1 , Y1 ) and ( X2 , Y2 ) Formulas: Slope= Midpoint= Distance=

  11. Parallel Lines and Angles S O L R E V I E W

  12. Parallel Lines and Angles S O L R E V I E W Corresponding Angles are . . .

  13. Parallel Lines and Angles S O L R E V I E W Corresponding Angles are . . .

  14. Parallel Lines and Angles S O L R E V I E W Corresponding Angles are . . . Name them !

  15. Parallel Lines and Angles S O L R E V I E W Corresponding Angles are . . . Name them !

  16. Parallel Lines and Angles S O L R E V I E W Alternate Interior Angles are . . .

  17. Parallel Lines and Angles S O L R E V I E W Alternate Interior Angles are . . .

  18. Parallel Lines and Angles S O L R E V I E W Alternate Interior Angles are . . . Name them !

  19. Parallel Lines and Angles S O L R E V I E W Alternate Interior Angles are . . . Name them !

  20. Parallel Lines and Angles S O L R E V I E W Consecutive Interior Angles are . . .

  21. Parallel Lines and Angles S O L R E V I E W Consecutive Interior Angles are . . . Supplementary

  22. Parallel Lines and Angles S O L R E V I E W Consecutive Interior Angles are . . . Supplementary Name them !

  23. Parallel Lines and Angles S O L R E V I E W Consecutive Interior Angles are . . . Supplementary Name them !

  24. S O L R E V I E W Proving ∆s Congruent

  25. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  26. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  27. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL the reflexive side

  28. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  29. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  30. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL alt. int. angles /reflexive side

  31. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  32. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  33. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL the reflexive side

  34. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABC ∆DEC SSS SAS ASA AAS HL

  35. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABC ∆DEC SSS SAS ASA AAS HL

  36. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABC ∆DEC SSS SAS ASA AAS HL vertical angles

  37. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  38. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL

  39. Proving ∆s Congruent S O L R E V I E W Choose a Method to Prove: ∆ABD ∆CDB SSS SAS ASA AAS HL alt. int. angles /reflexive side

  40. Angles of Regular Polygons S O L R E V I E W ?

  41. Angles of Regular Polygons S O L R E V I E W ?

  42. Angles of Regular Polygons S O L R E V I E W ? 360˚ The answer for all polygons

  43. Angles of Regular Polygons S O L R E V I E W ?

  44. Angles of Regular Polygons S O L R E V I E W ? 360˚ 360˚ n 6

  45. Angles of Regular Polygons S O L R E V I E W ? 60˚

  46. Angles of Regular Polygons S O L R E V I E W ? 60˚ + ? = 180˚ (Linear Pair of Angles) 60˚

  47. Angles of Regular Polygons S O L R E V I E W ? 120˚

  48. Angles of Regular Polygons S O L R E V I E W ? (6)(120˚) 120˚ (n)(120˚)

  49. Angles of Regular Polygons S O L R E V I E W (6)(120˚) 120˚ (n)(120˚)

  50. Similar Triangles S O L R E V I E W

More Related