1 / 24

Vertex fault tolerance for multiple spanning paths in hypercube

Vertex fault tolerance for multiple spanning paths in hypercube. Department of Computer Science and Information Engineering Dayeh University Professor: Chun-Nan Hung 洪春男 教授 Report by Guan-Yu Shi 施冠宇. Outline. Introduction Vertex fault tolerance for multiple spanning paths in hypercube

maxine-ross
Download Presentation

Vertex fault tolerance for multiple spanning paths in hypercube

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vertex fault tolerance for multiple spanning paths in hypercube Department of Computer Science and Information Engineering Dayeh University Professor: Chun-Nan Hung 洪春男 教授 Report by Guan-Yu Shi 施冠宇

  2. Outline • Introduction • Vertex fault tolerance for multiple spanning paths in hypercube • Conclusion

  3. Introduction • A graph: Hypercube • Q1=K2 , Qn=Qn-1 X K2 • 2nvertices 100 101 01 000 00 001 0 1 111 110 10 11 010 011 Q1 Q2 Q3

  4. Q3 Q3 Bipartite graph

  5. Hamiltonian laceable and hyper-Hamiltonian laceable Q4

  6. Hamiltonian laceable and hyper-Hamiltonian laceable Q4

  7. Introduction(cont.)

  8. X X Q4: |Fw|=0,|Fb|=2,|Kw|=4 ,|Kb|= 0 |Fw|=0,|Fb|=2,|Kw|=2 ,|Kb|= 0? Q4

  9. Introduction(cont.)

  10. Q8: |Fw|=|Fb|=0,|Kw|=|Kb|=4 Q7: |Fw|=|Fb|=0,|Kw|=|Kb|=3 |Fw|=1,|Fb|=0,|Kw|=2,|Kb|=4 t1 S2 S1 S4 t2 t4 t3 S3 t4能否直接連到Q12n-1? Q07 Q17

  11. Vertex fault tolerance for multiple spanning paths in hypercube

  12. Lemma 3 Case 1: |Fw| = 0,|F1| = 0 case 1.1: |K1b| = 0 case1.1.1 :|K1w| = 0 case1.1.2 :|K1w|  1 case 1.2: |K1b|  1, |K1w| = 0 case 1.3: |K1b|  1, |K1w|  1 case 1.3.1: |K11| = 0, |K1w|  |K1b| case 1.3.2: |K11| = 0, |K1b| > |K1w| and |K01w|  1 case 1.3.3: |K11| = 0, |K1b| > |K1w| and |K01w| = 0 case 1.3.4: |K11|  2, |K0w|  1 case 1.3.5: |K11|  2, |K0w| = 0 Case 2: |Fw| = 0, |F0b|  1, |F1b|  1 case 2.1: Kw  V0w or Kw  V1w case 2.2: |K0w|  1, |K1w|  1 Case 3: |Fb|  1, ,|Fw|  1 and (|F0| = 0 or |F1| = 0) case 3.1: |K1| = 0 case 3.2: |K1w| = 0 or |K1b| = 0 case 3.3: |K1w|  1, |K1b|  1 case 3.3.1: |K11| = 0 case 3,3.2: |K11|  2 Case 4: |Fb|  1, ,|Fw|  1, |F0|  1 ,|F1|  1 case 4.1: |K0b|+|F0b| = 0 or |K0w|+|F0w| = 0 or |K1b|+|F1b| = 0 or |K1w|+|F1w| = 0 case 4.2: |K0b|+|F0b|  1 or |K0w|+|F0w|  1 or |K1b|+|F1b|  1 or |K1w|+|F1w|  1

  13. Case 1: |Fw| = 0,|F1| = 0 case1.1: |K1b| = 0 case1.1.1 :|K1w| = 0 Q17: |Fw|=0,|Fb|=3,|Kw|=9 ,|Kb|=3 Q16: |Fw|=0,|Fb|=3,|Kw|=8 ,|Kb|=2 |Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4 S4 S3 S2 S5 w S1 (w) t4 (t1) t1 S6 (z) z t5 t3 t2 y t6 (y) x x x x Q02n-2 Q12n-2

  14. Case 2: |Fw| = 0,|F0b|  1, ,|F1b|  1 case2.1: Kw V0wor Kw V1w Q17: |Fw|=0,|Fb|=3,|Kw|=9 ,|Kb|=3 Q16: |Fw|=0,|Fb|=3,|Kw|=8 ,|Kb|=2 |Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4 |Fw|=0,|Fb|=1,|Kw|=5 ,|Kb|=3 t1 S2 S6 S5 (y1) y1 (S1) S1 y2 S3 t3 (y2) t6 t2 t5 t4 S4 x x x Q02n-2 Q12n-2

  15. Case 3: |Fb|  1, ,|Fw|  1 and (|F0| = 0 or |F1| = 0) case3.1: |K1| = 0 S2 Q17: |Fw|=1,|Fb|=2,|Kw|=7 ,|Kb|=5 Q16: |Fw|=1,|Fb|=2,|Kw|=6 ,|Kb|=4 |Fw|=0,|Fb|=1,|Kw|=8 ,|Kb|=6 t2 S5 S3 S4 S1 y1 (y1) t5 t4 t3 x1 t1 S6 y2 (y2) x t6 x2 x x Q02n-2 Q12n-2

  16. Case 4: |Fb|  1, ,|Fw|  1, |F0|  1 ,|F1|  1 case4.1: |K0b|+|F0b| = 0 or |K0w|+|F0w| = 0 or |K1b|+|F1b| = 0 or |K1w|+|F1w| = 0 t2 Q17: |Fw|=1,|Fb|=2,|Kw|=7 ,|Kb|=5 Q16: |Fw|=|Fb|=0,|Kw|=|Kb|=8 |Fw|=1,|Fb|=2,|Kw|=6 ,|Kb|=4 |Fw|=1,|Fb|=0,|Kw|=6 ,|Kb|=8 |Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4 |Fw|=0,|Fb|=2,|Kw|=7 ,|Kb|=3 S2 t4 S3 t5 t3 S4 S5 S6 t1 t6 x (y) y S1 x x x Q02n-2 Q12n-2

  17. Lemma 4 Case 1: |K0b| = n or |K0w| = n case 1.1: |K0w| = n case1.1.1 :|K00bb|  1 case1.1.2 :|K00bb| = 0 case 1.2: |K01ww|  1 or |K11ww|  1 case 1.3: |K01ww| = 0 and |K1w| = 1 case 1.4: |K01ww| = 0 and |K11ww|  1 and |K1w|  2 Case 2: |K0b|  (n -1) and |K0w|  (n-1) case 2.1: |K11| > 0 case 2.2: |K11| = 0 and |K0|  (n+1) and |Kbb| > 0 case 2.3: |K11| = 0 and ( |K0| = n or |Kbb| = 0 )

  18. Conclusion

More Related