1 / 19

Another example: constant prop

Another example: constant prop. Set D = 2 { x ! N | x 2 Vars Æ N 2 Z }. in. x := N. F x := N (in) = in – { x ! * } [ { x ! N }. out. in. x := y op z. F x := y op z (in) = in – { x ! * } [ { x ! N | ( y ! N 1 ) 2 in Æ ( z ! N 2 ) 2 in Æ

maya-stokes
Download Presentation

Another example: constant prop

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Another example: constant prop • Set D = 2 { x ! N | x 2 Vars Æ N 2 Z } in x := N Fx := N(in) = in – { x ! * } [ { x ! N } out in x := y op z Fx := y op z(in) = in – { x ! * } [ { x ! N | ( y ! N1 ) 2 in Æ ( z ! N2 ) 2 in Æ N = N1 op N2 } out

  2. Another example: constant prop in Fx := *y(in) = x := *y out in F*x := y(in) = *x := y out

  3. Another example: constant prop in Fx := *y(in) = in – { x ! * } [ { x ! N | 8 z 2 may-point-to(x) . (z ! N) 2 in } x := *y out in F*x := y(in) = in – { z ! * | z 2 may-point(x) } [ { z ! N | z 2 must-point-to(x) Æ y ! N 2 in } [ { z ! N | (y ! N) 2 in Æ (z ! N) 2 in } *x := y out

  4. Another example: constant prop in *x := *y + *z F*x := *y + *z(in) = out in x := f(...) Fx := f(...)(in) = out

  5. Another example: constant prop in *x := *y + *z F*x := *y + *z(in) = Fa := *y;b := *z;c := a + b; *x := c(in) out in x := f(...) Fx := f(...)(in) = ; out

  6. Another example: constant prop in s: if (...) out[0] out[1] in[0] in[1] merge out

  7. Lattice • (D, ⊑, ⊥, ⊤, ⊔, ⊓) =

  8. Lattice • (D, ⊑, ⊥, ⊤, ⊔, ⊓) = (2 A , ¶, A, ;, Å, [) where A = { x ! N | x ∊ Vars Æ N ∊ Z }

  9. Example x := 5 v := 2 w := 3 y := x * 2 z := y + 5 x := x + 1 w := v + 1 w := w * v

  10. Back to lattice • (D, ⊑, ⊥, ⊤, ⊔, ⊓) = (2 A , ¶, A, ;, Å, [) where A = { x ! N | x ∊ Vars Æ N ∊ Z } • What’s the problem with this lattice?

  11. Back to lattice • (D, ⊑, ⊥, ⊤, ⊔, ⊓) = (2 A , ¶, A, ;, Å, [) where A = { x ! N | x ∊ Vars Æ N ∊ Z } • What’s the problem with this lattice? • Lattice is infinitely high, which means we can’t guarantee termination

  12. Better lattice • Suppose we only had one variable

  13. Better lattice • Suppose we only had one variable • D = {⊥, ⊤ } [ Z • 8 i ∊ Z . ⊥⊑ i Æ i ⊑⊤ • height = 3

  14. For all variables • Two possibilities • Option 1: Tuple of lattices • Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, tn, un) create: tuple lattice Dn =

  15. For all variables • Two possibilities • Option 1: Tuple of lattices • Given lattices (D1, v1, ?1, >1, t1, u1) ... (Dn, vn, ?n, >n, tn, un) create: tuple lattice Dn = ((D1£ ... £ Dn), v, ?, >, t, u) where ? = (?1, ..., ?n) > = (>1, ..., >n) (a1, ..., an) t (b1, ..., bn) = (a1t1 b1, ..., antn bn) (a1, ..., an) u (b1, ..., bn) = (a1u1 b1, ..., anun bn) height = height(D1) + ... + height(Dn)

  16. For all variables • Option 2: Map from variables to single lattice • Given lattice (D, v1, ?1, >1, t1, u1) and a set V, create: map lattice V ! D = (V ! D, v, ?, >, t, u)

  17. Back to example in Fx := y op z(in) = x := y op z out

  18. Back to example in Fx := y op z(in) = in [ x ! in(y) op in(z) ] where a op b = x := y op z out

  19. General approach to domain design • Simple lattices: • boolean logic lattice • powerset lattice • incomparable set: set of incomparable values, plus top and bottom (eg const prop lattice) • two point lattice: just top and bottom • Use combinators to create more complicated lattices • tuple lattice constructor • map lattice constructor

More Related