320 likes | 340 Views
This study explores the application of greedy geometric forwarding as a routing strategy in dynamic scale-free networks embedded in hyperbolic metric spaces. The research investigates the properties of greedy routes, success ratio, stretch, and robustness in such network models, providing insights derived from hyperbolic geometry to explain network topological characteristics. The analysis aims to offer efficient routing solutions without requiring global topology knowledge in various network environments.
E N D
Greedy Forwarding inDynamic Scale-Free NetworksEmbedded in Hyperbolic Metric Spaces Dmitri KrioukovCAIDA/UCSD Joint work with F. Papadopoulos, M. Boguñá, A. Vahdat
Outline • Model of scale-free networks embeddedin hyperbolic metric spaces • Greedy forwarding in the model • Conclusion Motivation
Motivation • Routing overhead is a serious scaling limitation in many networks (Internet, wireless, overlay/P2P networks, etc.) • Search for infinitely scalable routing without any overhead • Do not propagate any information about changing topology • Route without any global topology knowledge, using only local information • How is it possible? 3
Greedy geometric forwarding as routing using only local information • Network topology is embedded in a geometric space • To reach a destination, each node forwards the packet to the neighbor that is closest to the destination in the space 4
Desired properties of greedy forwarding, and related metrics • Property 1: Greedy routes should never get stuck at local minima, nodes that do not have any neighbor closer to the destination than themselves • Success ratio, percentage of successful greedy paths reaching their destinations, should be close to 1 • Property 2: Greedy paths should be close to shortest paths • Stretch, ratio of the lengths of greedy to shortest paths, should be also close to 1 • Property 3: Even if topology changes, success ratio and stretch should stay close to 1 without any recomputation (e.g., without nodes changing their positions in the space) 6
Problem formulation (high-level) • Find a combination of network topology and underlying geometric space which would satisfy these desired properties • Any suggestions? • Nature offers some: many dynamic networks in nature and society do route information without any topology knowledge (brain, regulatory, social networks, etc.) • All these complex networks have power-law degree distributions (scale-free) and strong clustering (many triangular subgraphs) • Let’s focus on these topologies (which, luckily, also characterize the Internet and P2P networks) • But what about the underlying space? 7
Conjecture: space is hyperbolic • Nodes in real complex networks can often be classified hierarchically • Hierarchies are tree-like structures • Hyperbolic geometry is the geometry of tree-like structures • Formally: trees embed almost isometrically in hyperbolic spaces, not in Euclidean ones 8
Main hyperbolic property: the exponential expansion of space Circle length and disc area grow with their radius R as~ eR They are exactly2 sinh R2 (cosh R 1) The numbers of nodes in a tree at or within R hops from the root grow as~bRwhere b is the tree branching factor The metric structures of hyperbolic spaces and trees are essentially the same 9
Problem formulation (low-level) • Verify the conjecture: check if hyperbolic geometry, in the simplest possible settings, can naturally give rise to scale-free, strongly clustered topologies • Check if greedy forwarding satisfies the desired properties in the resulting embedding 10
Outline • Motivation • Greedy forwarding in the model • Conclusion Model of scale-free networks embeddedin hyperbolic metric spaces
Growing networks • The model can be adjusted for networks growing in hyperbolic spaces • All results stay the same 18
Outline Motivation Model of scale-free networks embeddedin hyperbolic metric spaces Conclusion Greedy forwarding in the model 19
Two greedy forwarding algorithms • Original Greedy Forwarding (OGF): select closest neighbor to destination, drop the packet if no one closer than current hop • Modified Greedy Forwarding (MGF): select closest neighbor to destination, drop the packet if a node sees it twice
Property 3: Robustness of greedy forwarding w.r.t. network dynamics • Scenario 1: Randomly remove a percentageof links and compute the new success ratio • Scenario 2: Remove a link and compute the percentage of paths that were going through it and are still successful (that is, the percentage of paths that found a by-pass)
Percentage of successful paths (dynamic networks, scenario 1)
Percentage of successful paths (dynamic networks, scenario 2)
Shortest paths in scale-free graphs and hyperbolic spaces 26
Outline Motivation Model of scale-free networks embeddedin hyperbolic metric spaces Greedy forwarding in the model Conclusion 27
Conclusion (low-level) • Hyperbolic geometry naturally explains the two main topological characteristics of complex networks • scale-free degree distributions • strong clustering • Greedy forwarding in complex networks embedded in hyperbolic spaces is exceptionally efficient 28
Conclusion (mid-level) • Complex network topologies are naturally congruent with hyperbolic geometries • Greedy paths follow shortest paths that approximately follow geodesics in the hyperbolic space • Both topology and geometry are tree-like • This congruency is robust w.r.t. topology dynamics • There are many link/node-disjoint shortest paths between the same source and destination that satisfy the above property • Strong clustering (many by-passes) boosts up the path diversity • If some of shortest paths are damaged by link failures, many others remain available, and greedy routing still finds them 29
Conclusion (high-level) • To efficiently route without topology knowledge, the topology should be both hierarchical (tree-like) and have high path diversity (not like a tree) • Complex networks do borrow the best out of these two seemingly mutually-exclusive worlds • Hidden hyperbolic geometry naturally explains how this balance is achieved 30
Implications • Greedy forwarding mechanisms in these settings may offer virtually infinitely scalable information dissemination (routing) strategies for communication networks • Zero communication costs (no routing updates!) • Constant routing table sizes (coordinates in the space) • No stretch (all paths are shortest, stretch=1) 31
Applications • Internet routing (hard): need to reverse the problem and find an embedding for a given Internet topology first • Overlay networks: • with underlay (easier; examples: existing P2P): have freedom of constructing a name space and its embedding according to the model, so that all the desired properties are satisfied • without underlay (harder; examples: CCN, pocket switching): need to make sure that the underlay network topology and its dynamics are congruent with the overlay name space and its dynamics 32