640 likes | 984 Views
Interspecific Relationships. AS Explanatory note. interspecific relationships (predation, parasitism, mutualism, commensalism, competition for resources). Mutualism (+,+).
E N D
AS Explanatory note • interspecific relationships (predation, parasitism, mutualism, commensalism, competition for resources)
Mutualism (+,+) = a close, co-operative association between individuals of two species from which both benefit, often characterised by communication between the participants; a form of symbiosis. e.g. pollination
Co-evolution is the evolution of two species to become totally dependent on each other. Each of the species involved exerts selective pressure on the other, so they evolve together. Co-evolution is an extreme example of mutualism
Acacia ants and acacia trees • Acacias are small, Central American trees in the Leguminosae. They have large, hollow thorns. The acacia ants live in the thorns. On the tips of its leaflets, the plant makes a substance used by the ants as food. The ants defend the tree from herbivores by attacking/stinging any animal that even accidentally brushes up against the plant. The ants also prune off seedlings of any other plants that sprout under “their” tree • Some examples of co-evolution :
Lichens • Lichens are composed of a mixture of fungi and algae. In each “species” of lichen, the alga and fungus are so closely intertwined that whole lichens are classified as species, rather than the component fungus/alga. The type of fungus and alga are species-specific. The alga does photosynthesis and produces sugars as fuel for both. The fungus attaches the whole lichen to its substrate (tree, rock) and holds in water needed by the alga.
3 Main Types of exploitation • Predation • Parasitism • Grazing Exploitation is when one organism gains benefit at the expense of another which is harmed. (+,-)
http://www.youtube.com/watch?v=c81bcjyfn6U&feature=PlayList&p=A0AD6A14E53D2CCE&playnext=1&playnext_from=PL&index=90http://www.youtube.com/watch?v=c81bcjyfn6U&feature=PlayList&p=A0AD6A14E53D2CCE&playnext=1&playnext_from=PL&index=90
Predation • Predation = predator kills prey (+/-) • Short term effect = p+p affect each others numbers
Two species of mites demonstrate the coupled oscillations of predator and prey densities Interpretation: It is apparent from the graph that both populations showed cyclical behaviour, and that the predator population generally tracked (lagged) the peaks in the prey population.
Predator – prey numbers • Predators can only reproduce if they eat enough prey. • predator numbers are influenced by prey numbers Mostly found in simple ecosystems – tropical ecosystems have complex food webs
Canadian Lynx mainly prey on Snowshoe Hare. An increase in hare numbers is soon followed by an increase in lynx numbers
Long term effect = p+p shape each others evolution The idea of an arms race between a prey animal evolving better ways to defend itself against a predator that is improving its own offensive abilities In this snowy environment, the polar bear is white to avoid being noticed as it approaches the seal, and the seal pup is white to avoid being noticed by the bear. Predator prey evolution explanation
Predator Strategies • Belonging to a group - can increase food intake via: -locating food -catching food
Mimicry = Resemblance of an organism (the mimic) in color, pattern, form, behavior, or a combination of these to another organism or object (the model). • The taking on by an animal of the look of another sort of animal or thing for the purpose of: • keeping itself safe (traditional sense) • enhancing predation
Female fireflies of the genus Photuris • Photuris females mimic the signal of other firefly species. • Responding male firefly is captured and eaten.
(Cleaner Fish + host = mutualism). A Cleaner Fish look-alike is able to get close to bite chunks off fin and gill. While the cleaner Labroides dimidiatus (top) is a symbiont to other marine fish, removing their ectoparasites, the mimic Aspidontus taeniatus (below) bites off parts of other fishes' skin and fins
Speed e.g. cheetah http://www.planetarkive.org/topics/attack2.html
Camouflage • http://www.planetarkive.org/topics/attack2.html • http://www.ryanphotographic.com/crypsis.htm
Poison http://www.planetarkive.org/topics/attack2.html
Sensitive senses Great white sharks use their amazing sense of smell to track down their prey underwater. They can detect a speck of blood, no bigger than a pinprick, that is floating around in over 100 litres of water from more than 4km away! http://www.planetarkive.org/topics/attack2.html
Prey Defences • Living in Groups • - greater vigilance(may be further enhanced by combining sensory capabilities of another species).
Sensitive senses e.g. impala - keen sense of smell+ baboon - excellent colour vision)
-increased armament – more teeth to deter predators e.g. a group of baboons can kill a leopard
-dilution effect - more for predator to choose from = less impact if one is lost • -confusion effect – difficult for predator to focus on one individual
Deception • camouflage + appropriate behaviour, e.g. ground-nesting chicks ‘freeze’.
counter-shading e.g. pelagic (open water) fish (e.g. Kahawai) silvery underside, dark top
Batesian Mimicry - a palatable animal mimics an unpalatable one e.g. viceroy resembles toxic monarch butterfly
One of the snakes in the picture below is poisonous and the other one is a mimic. Coral snakes are very easy to see because of their bright red, yellow, and black stripes. They are colored this way so that other animals know they are poisonous and will leave them alone. The Scarlet Kingsnake looks almost EXACTLY like the Coral snake, but it is perfectly harmless! The scarlet king snake on the left is the mimic, and the coral snake on the right is the poisonous one. The scarlet king snake is hoping that its enemies will think it is poisonous and not eat it! If you couldn't tell the difference, don't worry about it! The Kingsnake, or the mimic, would be really happy that you couldn't! If you ever see one of these snakes, here is a rhyme to help you remember the difference between the two. "Red on yellow, kill a fellow. Red on black, won't hurt Jack."
Mullerian Mimicry - several unpalatable species resemble one another – yellow and black stripes warn of danger – used by wasps, snakes, bees, frogs
Müllerian mimicry in Dendrobates frogs near Tarapoto, Peru(a - c) The three frogs are all putative members of a single species, Dendrobates imitator. Each of these different morphs is sympatric with a different species in a different geographical region. The species with which each morph is sympatric is shown directly below that morph. From left to right, the species in (d - f ) are: Dendrobates variabilis (Tarapoto), Dendrobates fantasticus (Huallaga Canyon) and `Dendrobates ventrimaculatus’ (Yurimaguas).
diversion of attack - eg ‘eyespots’ on butterfly and moth wings. Predator diverted away from body, or scared away.
autotomy - shedding of a body part when attacked eg NZ lizards and Tuatara can lose their tails.
Synchronised Breeding-shortens breeding season therefore less offspring lost to predators e.g. Gannets-saturates feeding capacity e.g. coral.
Parasitism A parasite is any organism that feeds at a host’s expense. The host is harmed but not killed. Parasites are always smaller than their host. One host may support many parasites of the same species. • Host specific = when a parasite depends for its food on one organism. • Parasites may weaken the host so that it becomes more vulnerable to other hazards. • There are more parasitic than free-living sp.
Ectoparasites live on the outside of the host e.g. mosquitoes, lice.
Endoparasites live inside the host e.g. liver flukes, tapeworm. Beef tapeworm = 7½ m – world’s biggest ‘microbe’ Ascarids or roundworm infections are primarily a problem of young horses. They seldom cause significant damage in animals that are 11 years or more old. They are primarily found in the small intestine.
They have reduced structures (inc sensory, muscular, & nervous systems) • ‘Holding-on’ structures eg hooks • Reproduction based on transmission of offspring to a new host. Adults cannot survive outside the host.
http://www.youtube.com/watch?v=vMG-LWyNcAs • http://www.youtube.com/watch?v=dy4cQON7-JU
produce many eggs though getting them to a new host is often difficult. • complex lifecycle with several different young stages, each in a different host.
Social Parasitese.g. cuckoo - a brood parasite.e.g. ants ‘slave-making’ of other ants nests. The picture shows a queen of a social parasite, Acromyrmex insinuator, being harassed by a worker of its host species, Acromyrmex echinatior. Socially parasitic ants use the nests and workforce of other ant species to raise their own offspring. The queens of social parasites need to get inside the nests of other ants, where they will lay eggs which are reared by the workers of their host.
Plant parasites. Connect with vascular tissue of host. Total Parasites rely fully on their host e.g. wood rose has no roots, no chlorophyll.